
“Mind the Gap”--Could a quantum 
computer solve optimization problems 

efficiently?

Work supported by

A.P.  Young

Talk at Statistical Physics of Quantum Matter, Taipei, July 31, 2013

http://young.physics.ucsc.edu

Collaborators: I. Hen, E. Farhi, P. Shor, D. Gosset, A. Sandvik, V. Smelyanskiy, 
S. Knysh, M. Guidetti.

http://physics.ucsc.edu/~peter
http://physics.ucsc.edu/~peter
http://physics.ucsc.edu/~peter
http://physics.ucsc.edu/~peter








Plan
•Motivation (solving optimization problems on a quantum computer)

•Quantum Monte Carlo (the method used to study large sizes)

• Results for Satisfiability-type problems

• Results for a spin-glass problem

• Conclusions



Motivation
There are some problems which could be solved 
much more efficiently on an eventual quantum 
computer than an classical computer. 
Most famous example: integer factoring (Shor) 
important for encryption. 
Could a quantum computer also solve optimization 
problems more efficiently than a classical computer?
Wide range of such problems in science, engineering, 
and industrial applications, e.g.
• Physics: spin glasses
• Biology: protein folding
• Computer science: satisfiability problems
• Industry: machine learning, image recognition... 

Could a quantum computer also solve optimization 
problems more efficiently than a classical computer?
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with s(0) = 0,  s(τ) = 1. 



H(t) = [1� s(t)]HD + s(t)HP

Quantum Adiabatic Algorithm

adiabatic?

System starts in ground state of driver Hamiltonian. If process 
is adiabatic (and T → 0), it ends in g.s. of problem Hamiltonian, 

0 1
HD HP(g.s.) (g.s.?)

s

Proposed by Farhi et. al (2001) to solve hard optimization 
problems on a quantum computer.
Want to find the ground state of a problem Hamiltonian 
involving Ising spins,               , or equivalently, bits 
Make quantum by adding a non-commuting driver Hamiltonian. 
Simplest is a transverse field:                                        

HP
�z
i = ±1 bi = 0 or 1

H
D

= �h
NX

i=1

�
�x

i

� 1
�

Total Hamiltonian:

with s(0) = 0,  s(τ) = 1. 



Experimental Interest
QAA is quantum annealing but directly implemented on the 
qubits of a quantum computer.
Quantum Adiabatic Algorithm is less sensitive to effects of 
decoherence than the traditional “circuit model” of quantum 
computing.
A company, D-Wave, has built a “quantum annealer” using the 
QAA with 512 superconducting qubits, so there are now 
starting to be real experiments, as well as theory.
In the experiments, though, coupling to the outside plays a 
substantial role, unlike in the simulations that I will describe. 
Effects of coupling to the environment in the QAA need to 
better understood.
Been shown (Aharonov et al.) that quantum adiabatic evolution 
can solve any problem that the circuit model can solve (though 
not necessarily in a natural way.) (Polynomially equivalent.)
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Quantum Monte Carlo
Early numerics, Farhi et al. for very small sizes N ≤ 20, on a 
particular problem found the time varied only as N2 , i.e. 
polynomial!
But possible “crossover” to exponential at larger sizes?
Want to estimate how the running time varies with size for large sizes.
We therefore have to do a Quantum Monte Carlo Sampling of 
the 2N states. 
QMC can efficiently study only equilibrium properties of a 
quantum system by simulating a classical model with an 
extra dimension, imaginary time, τ, where 
Used a version called the stochastic series expansion (SSE), 
pioneered by Sandvik.

0 � � < 1/T.

Not perfect, (statistical errors, need to ensure equilibration) but 
the only numerical method available for large N.
QMC → ΔEmin. Use size dependence of ΔEmin to get size 
dependence of running time in the QAA, ∼1/(ΔEmin)2
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Examples of results with the SSE code
Time dependent correlation functions decay with τ as a sum of exponentials

For large τ only first excited state contributes, → pure exponential decay

Small size, N= 24, excellent agreement with 
diagonalization.
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Large size, N = 128, good quality 
data, slope of straight line → gap.
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excited state, ΔE, with s, for 
one instance of 1-in-3 SAT 
with N = 64.
The gap has a minimum for 
s about 0.66 which is the 
bottleneck for the QAA.
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We compute the minimum 
gap for many (50) instances 
for each size N and look how 
the median minimum gap 
varies with size.



Satisfiability Problems I 
In satisfiability problems (SAT) we ask whether there is an 
assignment of N bits which satisfies all of M logical conditions 
(“clauses”). We assign an energy to each clause such that it is 
zero if the clause is satisfied and a positive value if not satisfied.

i.e. We need to determine if the ground state energy is 0.

We take the ratio of M/N to be at the satisfiability threshold, and 
study instances with a “unique satisfying assignment” (USA). 
(so gap to 1st excited state has a minimum whose value indicates the complexity.)

These SAT problems are “NP-complete”, a category of hard 
problems for which the time is exponential with classical 
algorithms, at least in the worst case.
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Satisfiability Problems II  
•  “Locked” 1-in-3 SAT
The clause is formed from 3 bits picked at random. The 
clause is satisfied (has energy 0) if one is 1 and the other two 
are 0 (in terms of spins one is -1 (green) and the other two 
are +1 (red)). Otherwise it is not satisfied (the energy is 1).
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The Exact Cover Problem II
Satisfiability transition at (Smelyanskiy et al., Zdeborova et al.)

                  (M/N)c ≅ 0.626     (N ➝ ∞)

For finite N, work close to the “transition”, i.e. point where 
number of satisfying assignments (SA) drops to 0.

Reasons:
(i) Problem is hard near the transition (Kirkpatrick et al)

(ii) Convenient to study instances with a “unique satisfying 
assignment” (USA).
(For finite N, the “transition”, and hence the greatest probability of a USA, occurs at M/N a little 
above the infinite-N critical value)

Example of a USA with 
N=7, M = 5 (V. Choi)

Example of a satisfying
assignment with N=7, M = 5.
(V. Choi)

Connections 
between spins 
form a random 
graph (no local 
xgeometry). d→∞



Satisfiability Problems III  
• 3-spin model (3-regular 3-XORSAT) 

3-regular means that each bit is in exactly three clauses. 3-
XORSAT means that the clause is satisfied if the sum of the 
bits (mod 2) is a value specified (0 or 1) for each clause.
In terms of spins σz (= ±1) we require that the product of the 
three σz’s in a clause is specified (+1 or -1). 

(Is at SAT threshold.)
This 3-spin problem can be solved by linear algebra 
(Gaussian elimination) since, in terms of bits, 0 or 1

and so is in P (the class of problems that can be solved in 
polynomial time). Nonetheless we will see that it is very hard 
for heuristic algorithms (quantum and classical).
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Clearly the behavior of the minimum gap is exponential

Exponential fit Power law fit

Plots of the median minimum gap (average over 50 instances)



Comparison with a classical algorithm, 
WalkSAT: I

WalkSAT is a classical, heuristic, local search algorithm. It is a 
reasonable classical algorithm to compare with QAA.
We have compared the running time of the QAA for the three 
SAT problems studied with that of WalkSAT.
For QAA, Landau-Zener theory states that the time is 
proportional to 1/(ΔEmin)2 (neglecting N dependence of matrix 
elements).
For WalkSAT the running time is proportional to number of “bit 
flips”.
We write the running time as proportional to  
We will compare the values of µ among the different 
models and between QAA and WalkSAT. 

exp(µ N).
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Comparison with a classical algorithm, 
WalkSAT: II

The trend is the SAME in both QAA and WalkSAT.  3-XORSAT (a 3-spin 
Hamiltonian) is the hardest, and locked 1-in-3 SAT the easiest.

Exponential behavior for both QAA and WalkSAT

Curious that the hardest problem for these heuristic algorithms is the one with a 
polynomial time algorithm (complexity class P). 



Comparison with a classical algorithm, 
WalkSAT: III

Values of µ  
(where time ~ 
exp[µ N]).

Model QAA WalkSAT Ratio

1-in-3 0.084(3) 0.0505(5) 1.66

2-in-4 0.126(7) 0.0858(8) 1.47

3-XORSAT 0.159(2) 0.1198(4) 1.32

These results used the simplest implementation of the QAA 
for instances with a USA.  

Exponential 
complexity in 
both cases.
QAA not better 
than WalkSAT.
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A “spin glass” on a random graph: 
For simplicity we put the spins a regular random graph, each 
site having exactly three neighbor (3-regular). Spins prefer to 
be antiparallel, an antiferromagnet (but see next slide)

“Replica” theory indicates that 
these 2-SAT-like problems are 
different from K-SAT problems 
for K > 2. (Hence we study it here.)

Note: there are large loops
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Spin Glass on a random graph: II
Cannot form an “up-down” antiferromagnet because of loops of 
odd length. In fact, it is a “spin glass”, a system with disorder 
and “frustration” (here no disorder in bonds, only geometry)

Adding the driver Hamiltonian there is a quantum phase 
transition at s = s* above which the symmetry is spontaneously 
broken.
Did “cavity” calculations (Gosset, Zamponi), semi-analytical 
approach in which the thermodynamic limit has been taken, but 
needs approximations in the spin glass phase for s > s*. These 
calculations find s*≅0.36
Also investigated the problem by QMC near s* (s ≤ 0.5). 
(Just considered instances with a “unique satisfying 
assignment”, apart from the degenerate state related by 
flipping all the spins. These are exponentially rare.) 
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Spin glass” on a random graph: III 
For larger sizes, a fraction of instances have two 
minima, one fairly close to s* (≃ 0.36) and other 
at larger s in the spin glass phase. 
Figure shows an example for N = 128. 
Hence did 2 analyses
(i) Global minimum in range (up to s=0.5)
(ii) If two minima, just take the local minimum 
near s*.

⇐Global 
[exponential 
(main figure)
preferred over 
power-law (inset)]

Local⇒
[power-law best 
(inset)]

⇐
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