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Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems
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Quantum computers promise to accelerate some kinds of calculations in a remarkable manner. But as in present-day classical computing, hardware is
only half the story: efficiency requires development of appropriate algorithms, such as the fast Fourier transform.

To apply a quantum computer to a broad class of problems, general-purpose algorithms are needed. One such method is the quantum adiabatic
algorithm, in which the problem to be solved is coded into a Hamiltonian Z. One prepares the quantum computer in the ground state of a reference
Hamiltonian 4 and then has it evolve under a time-dependent Hamiltonian /A7) that gradually switches from 4 to 4. If the evolution is slow enough
(“adiabatic”) the system ends up in the ground state of 4, which contains information about the desired solution.

In a paper in Physical Review E, Iltay Hen and Peter Young of the University of California, Santa Cruz, show that “slow enough” may be very slow indeed.
The reason is that the time required for adiabatic evolution depends inversely on the gap in energies between the ground and first excited states of A7).
Using computer simulations, Hen and Young show that for three classes of logic problems, the scaling of the gap is such that the computational time can
be expected to grow exponentially with the size of the problem. The authors suggest that it might be possible to optimize the evolution of Az to avoid the
bottleneck associated with a vanishing gap. — Ron Dickman
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* Motivation (solving optimization problems on a quantum computer)
* Quantum Monte Carlo (the method used to study large sizes)

* Results for Satisfiability-type problems

* Results for a spin-glass problem

* Conclusions



Motivation

There are some problems which could be solved
much more efficiently on an eventual quantum
computer than an classical computer.

Most famous example: integer factoring (Shor)

important for encryption.
Could a quantum computer also solve optimization
problems more efficiently than a classical computer?

Wide range of such problems in science, engineering,
and industrial applications, e.q.

* Physics: spin glasses

* Biology: protein folding

 Computer science: satisfiability problems

* Industry: machine learning, image recognition...



Quantum Adiabatic Algorithm

Proposed by Farhi et.al (2001) to solve hard optimization
problems on a quantum computer.
Want to find the ground state of a problem Hamiltonian7{ »
involving Ising spins,o; = =1, or equivalently, bits b; = 0 or 1
Make quantum by adding a non-commuting driver Hamiltonian.
Simplest is a transverse field: 1

Hp = —hz (0‘2IB — 1)
Total Hamiltonian: i=1

H(t) = {1 —s(t)|Hp + s(t)Hp
with s(0) =0, s(t)=1.
Hp (g.s.) adiabatic? Hp(gs.?)

g

System starts in ground state of driver Hamiltonian. If process
is adiabatic (and T — 0), it ends in g.s. of problem Hamiltonian,
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Experimental Interest

QAA is quantum annealing but directly implemented on the
qubits of a quantum computer.

Quantum Adiabatic Algorithm is less sensitive to effects of
decoherence than the traditional “circuit model” of quantum
computing.

A company, D-Wave, has built a “quantum annealer” using the

QAA with 512 superconducting qubits, so there are now
starting to be real experiments, as well as theory.

In the experiments, though, coupling to the outside plays a
substantial role, unlike in the simulations that | will describe.
Effects of coupling to the environment in the QAA need to
better understood.

Been shown (Aharonov et al.) that quantum adiabatic evolution
can solve any problem that the circuit model can solve (though
not necessarily in a natural way.) (Polynomially equivalent.)



Quantum Phase Transition
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Bottleneck is likely to be a quantum phase transition
(QPT) where the gap to the first excited state is very small

Landau Zener Theory:
To stay in the ground
state the time needed
is proportional to A E 2

min
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Bottleneck is likely to be a quantum phase transition
(QPT) where the gap to the first excited state is very small

Landau Zener Theory:
To stay in the ground
state the time needed
is proportional to A E 2

min

Used QMC to compute A E for different s: — AEmin



Quantum Monte Carlo

Early numerics, Farhi et al. for very small sizes N < 20, on a
particular problem found the time varied only as N2, i.e.
polynomial!

But possible “crossover” to exponential at larger sizes”?

Want to estimate how the running time varies with size for large sizes.

We therefore have to do a Quantum Monte Carlo Sampling of
the 2" states.

QMC can efficiently study only equilibrium properties of a
quantum system by simulating a classical model with an

extra dimension, imaginary time, T, where 0 < 7 < 1/T.
Used a version called the stochastic series expansion (SSE),
pioneered by Sandvik.

Not perfect, (statistical errors, need to ensure equilibration) but

the only numerical method available for large N.
QMC — AEmin. Use size dependence of AEmin to get size

dependence of running time in the QAA, ~1/(AEmin)?



Examples of results with the SSE code

Time dependent correlation functions decay with T as a sum of exponentials

(A(T)A(0)) — (A)> = > [(0|A|n)|? exp[—(En — Eo)7]
nF#0

For large T only first excited state contributes, — pure exponential decay
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Small size, N= 24, excellent agreement with Large size, N = 128, good quality

diagonalization. data, slope of straight line — gap.



Dependence of gap on s
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Results for the dependence
of the gap to the first
excited state, AE, with s, for
one instance of 1-in-3 SAT
with N = 64.

The gap has a minimum for
s about 0.66 which is the
bottleneck for the QAA.
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Dependence of gap on s
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| Mind THIS gap|

Results for the dependence
of the gap to the first
excited state, AE, with s, for
one instance of 1-in-3 SAT
with N = 64.

The gap has a minimum for
s about 0.66 which is the
bottleneck for the QAA.

We compute the minimum
gap for many (50) instances
for each size N and look how
the median minimum gap
varies with size.



Satisfiability Problems I

In satisfiability problems (SAT) we ask whether there is an

assignment of N bits which satisfies all of M logical conditions
(“clauses”). We assign an energy to each clause such that it is
zero If the clause is satisfied and a positive value if not satisfied.

We take the ratio of M/N to be at the satisfiability threshold, and

study instances with a “unique satisfying assignment” (USA).
(so gap to 1st excited state has a minimum whose value indicates the complexity.)

These SAT problems are "NP-complete”, a category of hard
problems for which the time is exponential with classical
algorithms, at least in the worst case.



Satisfiability Problems II

e “Locked” 1-in-3 SAT
The clause is formed from 3 bits picked at random. The
clause is satisfied (has energy 0) if one is 1 and the other two
are O (in terms of spins one is -1 (green) and the other two
are +1 (red)). Other\lee it is not satlsfled (the energy is 1).

Connections
between spins
form a random
graph (no local
xgeometry). d—

1
Satisfied Unsatlsfled Unsatlsfled

Example of a satisfying
assignment with N=7, M = 5.
(V. Choi)

Hp= Y <Uf+a§2+a§—1>2

clauses




Satisfiability Problems III

 3-spin model (3-regular 3-XORSAT)
3-regular means that each bit is in exactly three clauses. 3-
XORSAT means that the clause is satisfied if the sum of the
bits (mod 2) is a value specified (0 or 1) for each clause.
In terms of spins 0% (= £1) we require that the product of the
three 0%'s in a clause is specified (+1 or -1).
dalgy |
Hp =3 - (1= JaoZ,0%,0% )

a=—1

(Is at SAT threshold.)
This 3-spin problem can be solved by linear algebra
(Gaussian elimination) since, in terms of bits, O or 1

ba,l + ba,2 + ba,S — Ja (mOd 2)
and so is in P (the class of problems that can be solved in
polynomial time). Nonetheless we will see that it is very hard
for heuristic algorithms (quantum and classical).



Locked 1-in-3 SAT

Plots of the median minimum gap (average over 50 instances)
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Clearly the behavior of the minimum gap is exponential




Comparison with a classical algorithm,
WalkSAT: I

WalkSAT iIs a classical, heuristic, local search algorithm. It is a
reasonable classical algorithm to compare with QAA.

We have compared the running time of the QAA for the three
SAT problems studied with that of WalkSAT.

For QAA, Landau-Zener theory states that the time is

proportional to 1/(AEmin)? (neglecting N dependence of matrix
elements).

For WalkSAT the running time is proportional to number of “bit
flips”.
We write the running time as proportional to ‘ exp(M N).‘

We will compare the values of y among the different
models and between QAA and WalkSAT.




Comparison with a classical algorithm,
WalkSAT: 11
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Exponential behavior for both QAA and WalkSAT

The trend is the SAME in both QAA and WalkSAT. 3-XORSAT (a 3-spin
Hamiltonian) is the hardest, and locked 1-in-3 SAT the easiest.

Curious that the hardest problem for these heuristic algorithms is the one with a
polynomial time algorithm (complexity class P).



Comparison with a classical algorithm,

WalkSAT: 111
Exponential
| Model |QAA WalkSAT | Ratio complexity in
both cases.

1-in-3  |0.084(3)| 0.0505(5) | 1.66 QAA not better
than WalkSAT.

-1n- 0.126(7)| 0.085 1.47
2-in-4 (7) 558(8) Values of |

(where time ~
3-XORSAT |0.159(2)| 0.1198(4) 1.32 exp[u NJ).

These results used the simplest implementation of the QAA
for instances with a USA.




A “spin glass” on a random graph:

For simplicity we put the spins a regular random graph, each
site having exactly three neighbor (3-regular). Spins prefer to
be antiparallel, an antiferromagnet (but see next slide)

The problem Hamiltonian is
1

Hp = B Z (1—|—0'ichgz.)

(2,7)

Note the symmetry under

Z . Z .
o; — —0;, V1

“Replica” theory indicates that
these 2-SAT-like problems are
different from K-SAT problems
for K> 2. (Hence we study it here.)

Note: theré are large loops



Spin Glass on a random graph: 11

Cannot form an “up-down” antiferromagnet because of loops of
odd length. In fact, it is a “spin glass”, a system with disorder
and “frustration” (here no disorder in bonds, only geometry)

Adding the driver Hamiltonian there is a quantum phase
transition at s = s” above which the symmetry is spontaneously
broken.

Did “cavity” calculations (Gosset, Zamponi), semi-analytical
approach in which the thermodynamic limit has been taken, but
needs approximations in the spin glass phase for s > s". These
calculations find s'=0.36

Also investigated the problem by QMC near s™ (s < 0.5).

(Just considered instances with a “unique satisfying
assignment”, apart from the degenerate state related by
flipping all the spins. These are exponentially rare.)
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Spin glass” on a random graph: 111
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