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Issue to address: How to renormalize classical or quantum 
statistical models accurately and efficiently  

Outline 

1. Brief introduction to the tensor renormalization 

 

2. HOTRG: tensor renormalization based on the higher-

order singular value decomposition 

 

3. PESS: Projected Entangled Simplex State 

representation of quantum many-body wave function 
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 coarse graining : refine the wavefunction by local unitary transformations 

Ernst Stueckelberg 

Idea of Renormalization Group 



To represent a targeted state 
 

by an approximate wavefunction using a 
limited number of many-body basis states  

 
such that their overlap is maximized  
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Key issue: 
How to determine these optimal basis states? 

Idea of Numerical Renormalization Group 



Stage I: Wilson NRG  1975 -              

 0 Dimensional problems (single impurity Kondo model) 

 

Stage III: Renormalization of tensor network states 

 2D or higher dimensional quantum/classical models 

 

Stage II: DMRG  1992 -          
 most accurate method for 1D quantum lattice models 

 

Evolution of Numerical Renormalization Group 

K. Wilson  

S R White 



 All classical and quantum lattice models are or can be 
represented as tensor network models 

 Ground state wavefunctions of quantum lattice models 
can be represented as tensor-network states  

What are tensor-network states/models 



i j
ij

H= -J S S∑

 𝑆𝑗  𝑆𝑖 

 𝑆𝑘  𝑆𝑙 
=  𝑇𝑆𝑖𝑆𝑗𝑆𝑘𝑆𝑙= exp −β𝐻∎  

𝐻 = �𝐻∎
∎

 

 
𝑍 = Tr exp −β𝐻  

    = Tr � exp −β𝐻∎
∎

 

    = Tr �𝑇𝑆𝑖𝑆𝑗𝑆𝑘𝑆𝑙
{𝑆}

 

Example: tensor-network representation of Ising model 



Physical state Virtual basis state 

d-dimensional quantum model  = (d+1)-dimensional classical model 

under the framework of path integration 

Many-parameter 
variational wavefunction 
 
the tensor elements are 
unknown and need to be 
determined 

Quantum lattice model 
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Quantum lattice model 

1. How to determine all local tensor elements? 

 

 

2. How to trace out all tensors to obtain the expectation values? 

Classical statistical model 

How to trace out all tensor indices? 

Questions to be solved by the tensor renormalization group 



H.C. Jiang, et al, PRL 101, 090603 (2008)  

Z. Y. Xie et al, PRL 103, 160601 (2009) 

H. H. Zhao, et al, PRB 81, 174411 (2010) 

Z. Y. Xie et al, PRB 86, 045139 (2012)  

How to renormalize tensor-network states? 

HOTRG:  

coarse graining tensor renormalization by the higher 

order singular value decomposition 



Step 1: coarse graining 
To contract two local tensors into one 

D 
D2 

D 

x = (x1, x2),    x’ = (x’1, x’2)   

HOTRG: Coarse graining tensor renormalization based on HOSVD 

Higher order singular value decompostion (HOSVD) 



Step 2: determine the unitary transformation matrices 
By the higher order singular value decomposition 

HOTRG: Coarse graining tensor renormalization based on HOSVD 



Singular value decomposition 
 
 
 
 
 
 
 
 

       Schmidt decomposition 
 
 
 
 
 
 

Λn
2  is the eigenvalue of reduced 

density matrix 
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Singular value decomposition of matrix 



Core tensor 
 all-orthogonal: 
 
 
 pseudo-diagonal / ordering: 

 

L. de Latheauwer, B. de Moor, and J. Vandewalle, SIAM, J. Matrix Anal. Appl, 21, 1253 (2000). 

low-rank approximation for tensors 

Higher order singular value decompostion (HOSVD) 

Generalization of the singular value decomposition of matrixs to tensors 



Step 3: renormalize the tensor 
cut the tensor dimension according to the norm of the core tensor 

if  ε1 < ε2 ,   U(n) = UL
 

if  ε1 > ε2 ,   U(n) = UR 

truncation error = min(ε1 , ε2 ) 

HOTRG: Coarse graining tensor renormalization based on HOSVD 



Critical Temperature of 3D Ising model 

Bond dimension 



Other RG 
methods 

Critical Temperature of 3D Ising model 

4.51152469(1) HOTRG D = 23 



Relative difference is less than 10-5 

HOTRG (D=14):   0.3295 

Monte Carlo:         0.3262 

Series Expansion:  0.3265 

MC data: A. L. Talapov, H. W. J. Blote, J. Phys. A: Math. Gen. 29, 5727 (1996). 

Magnetization of 3D Ising model 
Xie et al, PRB 86,045139 (2012) 



Solid line: Monte Carlo data from X. M. Feng, and H. W. J. Blote, Phys. Rev. E 81, 031103 (2010) 

D = 14 

Specific Heat of 3D Ising model 



2D QuantumTransverse Ising Model at T = 0K 

2D Quantum Ising model 



Projected Entangled Simplex State (PESS)  

 arXiv:1307.5696 

Novel Tensor-Network States 

http://arxiv.org/abs/1307.5696


Basic properties of quantum many-body wavefunction 

minimal number of basis states needed 
grows exponentially with system size 

𝑺𝒆𝒆𝒆 ~ 𝑵 ~ 𝐥𝐥 χ 

χ ~ 𝒆𝑵 

Entanglement Entropy between A and B B 
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Area Law of Entanglement Entropy 
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Basic properties of quantum many-body wavefunction 

minimal number of basis states needed 
grows exponentially with system size 

𝑺𝒆𝒆𝒆 ~ 𝑵 ~ 𝐥𝐥 χ 

χ ~ 𝒆𝑵 
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Area Law of Entanglement Entropy 
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What kind of wavefunctions satisfy the 

entanglement area law? 



The Answer: tensor-network states 

  1 dimension 

 Matrix product state (MPS) 

 Multi-scale entanglement renormalization ansatz (MERA) 

 

  2 or higher dimensions 

 Projected entangled pair state (PEPS)  

          = tensor product state 

 …… 

 Projected Entangled Simplex State (PESS)  



1D: Matrix product state 
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Matrix product state (MPS)               dD2L  parameters            
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Matrix product state (MPS) 

Ostlund and Rommer, PRL 75, 3537 (1995) 

 It is the wavefunction generated by the DMRG 

 Can be taken as an efficient trial wave function in 1D 

1D: Matrix product state 
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Affleck, Kennedy, Lieb, Tasaki, PRL 59, 799 (1987) 

Example AKLT valence bond solid state 

A S=1 spin is a symmetric 
superposition of two S=1/2 spins 

Aαβ[m] 

α            β 
m 

virtual S=1/2 spin 

Aαβ[m] :  
To project two virtual 
S=1/2 states, α and β, 
onto a S=1 state m 

Aαβ[m] 
α            β 

m 

= 



Haldane 

1i i
i
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Y2BaNiO5  

Ni2+ S = 1 

Energy gap 

Matrix Product State and Haldane Conjecture 

Integer antiferromagnetic 
Heisenberg spin system 
has a finite excitation gap 



Verstraete, Cirac 04 

AKLT valence bond solid state in 2D 

𝑇𝑎𝑎𝑎𝑎  [𝑚𝑖] = 𝑎              𝑏 
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To project two S=2 spins on sites 
i and j onto a total spin S=4 state 

Physical state Virtual basis state 

S = 2 



2D tensor network state: Projected Entangled Pair State (PEPS) 

𝑇𝑥𝑥′𝑦𝑦′  [𝑚] =  𝑥              𝑥𝑥 
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Verstraete, Cirac, arXiv:0407066 

Physical state Virtual basis state 



Projected Entangled Pair State (PEPS) 

 Successfully applied to the quantum spin 

models on honeycomb and square lattices 

 But, difficult to obtain a converged result if 

applied to the AFM Heisenberg or other models 

on the Kagome or other frustrated lattices 
Kagome Lattice 

Physical state Virtual basis state 



S=1/2 Kagome Heisenberg model: Z2 spin liquid 
Depenbrock,McCulloch,Schollwock, PRL 109, 067201 (2012)  

Ground state energy obtained with different methods 



Projected Entangled Simplex States (PESS) 

 Virtual spins at each simplex (here triangle), instead of at each pair, form a 

maximally entangled state 

 Remove the geometry frustration: The PESS wavefunction on the Kagome 

lattice is defined on the decorated honeycomb lattice (no frustration) 

Projection tensor 

Simplex tensor 



Simplex Solid States 
D. P. Arovas, Phys. Rev. B 77, 104404 (2008) 

Example: S = 2 spin model on the Kagome lattice 
 

A S = 2 spin is a symmetric superposition of two virtual S = 1 spins 
 

Three virtual spins at each triangle form a spin singlet 

Projection tensor 

Simplex tensor 



S=2 Simplex Solid State on the Kagome Lattice  

Projection tensor 

Simplex tensor 

𝐴𝑎𝑎[𝜎] = 1 1 2
𝑎 𝑏 𝜎  

antisymmetric tensor 

C-G coefficients 

Local tensors 

Pn : projection operator 

Parent Hamiltonians 

or 



Projected Entangled Simplex State (PESS) 

Kagome Lattice 

 

3-PESS form a decorated 

honeycomb lattice 

 

 

 

5-PESS form a decorated 

square lattice 



PESS on other lattices 

Order of local tensors:  

 Simplex tensor: D3 

 Projection tensor: dD3 

 

Order of local tensor in PEPS: dD6 

Triangular Lattice 

Square Lattice 

Two kinds of simplex solid states 

 Vertex-sharing 

 Edge-sharing 



Ground state energy of the S=1/2 Kagome Heisenberg model 



Summary 

 HOTRG provides an accurate numerical method for 

studying thermodynamic quantities of classical/quantum 

statistical models 

 

 Projected Entangled Simplex State (PESS) is a good 

representation for solving the frustrated quantum lattice 

models  



Simple Update based on the HOSVD 
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