Renormalization of tensor network states

Tao Xiang Institute of Physics, Chinese Academy of Sciences

Collaborators:

Zhiyuan Xie, Jing Chen, Jifeng Yu, Xin Kong (IOP) Bruce Normand (Renmin University of China)

Outline

Issue to address: How to renormalize classical or quantum statistical models accurately and efficiently

1. Brief introduction to the tensor renormalization

2. HOTRG: tensor renormalization based on the higherorder singular value decomposition

3. PESS: Projected Entangled Simplex State representation of quantum many-body wave function

Idea of Renormalization Group

coarse graining : refine the wavefunction by local unitary transformations

Idea of Numerical Renormalization Group

How to determine these optimal basis states?

Evolution of Numerical Renormalization Group

Stage I: Wilson NRG 1975 -

0 Dimensional problems (single impurity Kondo model)

Stage II: DMRG 1992 -

most accurate method for 1D quantum lattice models

Stage III: Renormalization of tensor network states

2D or higher dimensional quantum/classical models

S R White

What are tensor-network states/models

- All classical and quantum lattice models are or can be represented as tensor network models
- Ground state wavefunctions of quantum lattice models can be represented as tensor-network states

$$
Z = Tr \prod_i T_{x_i x_i' y_i y_i'}
$$

Example: tensor-network representation of Ising model

$$
H = -J \sum_{\langle ij \rangle} S_i S_j
$$

$$
H = \sum_{\blacksquare} H_{\blacksquare}
$$

$$
Z = \text{Tr} \exp(-\beta H)
$$

$$
= \text{Tr} \prod_{\{S\}} \exp(-\beta H_{\bullet})
$$

$$
= \text{Tr} \prod_{\{S\}} T_{S_i S_j S_k S_l}
$$

$$
S_i \underbrace{\bullet}_{S_k} S_j = T_{S_i S_j S_k S_l} = \exp(-\beta H \bullet)
$$

Quantum lattice model

 d -dimensional quantum model = $(d+1)$ -dimensional classical model

under the framework of path integration

Questions to be solved by the tensor renormalization group

Quantum lattice model

1. How to determine all local tensor elements?

$$
\Psi \rangle = Tr \prod T_{x_i x'_i y_i y'_i} [m_i] |m_i \rangle
$$

2. How to trace out all tensors to obtain the expectation values?

$$
\langle \hat{O} \rangle = \frac{\langle \Psi | \hat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle}
$$

HOTRG:

coarse graining tensor renormalization by the higher order singular value decomposition

> **H.C. Jiang, et al, PRL 101, 090603 (2008) Z. Y. Xie et al, PRL 103, 160601 (2009) H. H. Zhao, et al, PRB 81, 174411 (2010) Z. Y. Xie et al, PRB 86, 045139 (2012)**

HOTRG: Coarse graining tensor renormalization based on HOSVD

Higher order singular value decompostion (HOSVD)

Step 1: coarse graining

To contract two local tensors into one

$$
M_{xx'yy'}^{(n)} = \sum_{i} T_{x_1x'_1yi}^{(n)} T_{x_2x'_2iy'}^{(n)}
$$

 $x = (x_1, x_2), \quad x' = (x', x'')$

Step 2: determine the unitary transformation matrices

By the higher order singular value decomposition

$$
M^{(n)}_{xx'yy'} = \sum_{ijkl} S_{ijkl} U^L_{xi} U^R_{x'j} U^U_{yk} U^D_{y'l}
$$

Singular value decomposition of matrix

$$
\overline{\left|i\right\rangle_{\rm sys}}
$$
 $|j\rangle_{\rm env}$ $\left|\psi\right\rangle = \sum_{i,j} f_{ij} |i\rangle_{\rm sys} |j\rangle_{\rm env}$

Higher order singular value decompostion (HOSVD)

Generalization of the singular value decomposition of matrixs to tensors

$$
M_{xx'yy'}^{(n)} = \sum_{ijkl} S_{ijkl} U_{xi}^L U_{x'j}^R U_{yk}^U U_{y'l}^D
$$

Core tensor all-orthogonal: $\langle S_{i,j} \dots | S_{i,j',j'} \rangle = 0,$ if $j \neq j'$ **pseudo-diagonal / ordering:** $|S_{:,j...}| \geq |S_{:,j'...}|,$ if $j < j'$.

low-rank approximation for tensors

L. de Latheauwer, B. de Moor, and J. Vandewalle, SIAM, J. Matrix Anal. Appl, 21, 1253 (2000).

Step 3: renormalize the tensor

cut the tensor dimension according to the norm of the core tensor

$$
\varepsilon_1 = \sum_{i>D} |S(i, :, :, :)|^2
$$

$$
\varepsilon_2 = \sum_{j>D} |S(:, j, :, :)|^2
$$

truncation error = $\min(\varepsilon_1, \varepsilon_2)$

$$
\begin{aligned}\n\text{if } \varepsilon_1 < \varepsilon_2, \quad U^{(n)} = U^L \\
\text{if } \varepsilon_1 > \varepsilon_2, \quad U^{(n)} = U^R\n\end{aligned}
$$

Critical Temperature of 3D Ising model

Critical Temperature of 3D Ising model

Magnetization of 3D Ising model

Xie et al, PRB 86,045139 (2012)

Relative difference is less than 10-5

MC data: A. L. Talapov, H. W. J. Blote, J. Phys. A: Math. Gen. 29, 5727 (1996).

Specific Heat of 3D Ising model

Solid line: Monte Carlo data from X. M. Feng, and H. W. J. Blote, Phys. Rev. E 81, 031103 (2010)

2D Quantum Ising model

Novel Tensor-Network States

Projected Entangled Simplex State (PESS)

[arXiv:1307.5696](http://arxiv.org/abs/1307.5696)

Basic properties of quantum many-body wavefunction

Area Law of Entanglement Entropy

$$
S_{ent} \sim N \sim \ln \chi
$$

 $\chi \sim e^N$

minimal number of basis states needed grows exponentially with system size

Basic properties of quantum many-body wavefunction

What kind of wavefunctions satisfy the entanglement area law?

Area Law of Entanglement Entropy

$$
S_{ent} \sim N \sim \ln \chi
$$

 $\chi \sim e^N$

minimal number of basis states needed grows exponentially with system size

≥ 1 dimension

Matrix product state (MPS) Multi-scale entanglement renormalization ansatz (MERA)

 ≥ 2 or higher dimensions

……

Projected entangled pair state (PEPS)

= tensor product state

Projected Entangled Simplex State (PESS)

1D: Matrix product state

 l

() 1 1 1 []... [] ... *L L L m m* Ψ = ∑ *Tr A m A m m m A*αβ[*m*] ^αβ *m*

1D: Matrix product state

Ostlund and Rommer, PRL **75**, 3537 (1995)

 \checkmark It is the wavefunction generated by the DMRG

Can be taken as an efficient trial wave function in 1D

Matrix product state (MPS)

$$
\boxed{\Psi} = \sum_{m_1 \cdots m_L} Tr(A[m_1] \dots A[m_L]) | m_1 \dots m_L}
$$
\n
$$
m_1 \quad m_2 \quad m_3 \dots \dots \quad m_{L-1} \quad m_L
$$
\n
$$
m_L \quad m_1 \quad m_2 \quad m_3 \dots \dots \quad m_{L-1} \quad m_L
$$

Example AKLT valence bond solid state

$$
H = \sum_{i} \frac{1}{2} \left[S_i \cdot S_{i+1} + \frac{1}{3} (S_i \cdot S_{i+1})^2 + \frac{2}{3} \right]
$$

A S=1 spin is a symmetric superposition of two $S=1/2$ spins

$$
|\Psi\rangle = \sum_{m_1\cdots m_L} Tr(A[m_1]...A[m_L]) |m_1...m_L\rangle
$$

\n
$$
A_{\alpha\beta}[m]:
$$

\nTo project two virtual
\n
$$
S=1/2 \text{ states, } \alpha \text{ and } \beta,
$$

\n
$$
A[-1] = \begin{pmatrix} 0 & 0 \\ \sqrt{2} & 0 \end{pmatrix} \qquad A[0] = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad A[1] = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}
$$

\n
$$
S=1/2 \text{ states, } \alpha \text{ and } \beta,
$$

\nonto a S=1 state m

Affleck, Kennedy, Lieb, Tasaki, PRL **59**, 799 (1987)

Matrix Product State and Haldane Conjecture

$$
H = \sum_i S_i \cdot S_{i+1}
$$

Integer antiferromagnetic Heisenberg spin system has a finite excitation gap

Haldane

AKLT valence bond solid state in 2D

2D tensor network state: Projected Entangled Pair State (PEPS)

Verstraete, Cirac, arXiv:0407066

Projected Entangled Pair State (PEPS)

$$
|\Psi\rangle = Tr \prod T_{x_i x'_i y_i y'_i} [m_i] |m_i\rangle
$$

Virtual basis state
Physical state

- \triangleright Successfully applied to the quantum spin models on honeycomb and square lattices
- \triangleright But, difficult to obtain a converged result if applied to the AFM Heisenberg or other models on the Kagome or other frustrated lattices

Kagome Lattice

S=1/2 Kagome Heisenberg model: Z_2 spin liquid

Depenbrock,McCulloch,Schollwock, PRL 109, 067201 (2012)

Ground state energy obtained with different methods

Projected Entangled Simplex States (PESS)

- \triangleright Virtual spins at each simplex (here triangle), instead of at each pair, form a maximally entangled state
- \triangleright Remove the geometry frustration: The PESS wavefunction on the Kagome lattice is defined on the decorated honeycomb lattice (no frustration)

Simplex Solid States

D. P. Arovas, Phys. Rev. B **77**, 104404 (2008)

Example: $S = 2$ spin model on the Kagome lattice

 \overline{A} S = 2 spin is a symmetric superposition of two virtual S = 1 spins

Three virtual spins at each triangle form a spin singlet

S=2 Simplex Solid State on the Kagome Lattice

Simplex tensor

Projected Entangled Simplex State (PESS)

Kagome Lattice

3-PESS form a decorated honeycomb lattice

 (a) 3-PESS

5-PESS form a decorated square lattice

 (b) 5-PESS

PESS on other lattices

Summary

 HOTRG provides an accurate numerical method for studying thermodynamic quantities of classical/quantum statistical models

▶ Projected Entangled Simplex State (PESS) is a good representation for solving the frustrated quantum lattice models

Simple Update based on the HOSVD

