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One-Way Quantum Computation:
by Local Measurement

o Single-qubit measurements on the 2D cluster state
gives rise to universal quantum computation (QC)

[Raussendorf &Briegel, PRLO1’]
> 2D cluster state :
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v Universal gates can be implemented 0



Cluster state and graph state

o Graph states: defined on any graph e Fisert & Briegel 04]

> Via stabilizer generators:

K,U|G> — ‘G>, Y vertices v [These egs. uniquely define |G>.]

Ky, = Xy ®uer(U)Z“ (X,Y,Z: Pauli matrices)

» Via controlled-Z gates: |G) = H | CZii (I H)+) - [+H)
et ) = (10) = |1)/v2

o Cluster states: special case of graph states on
regular lattices, e.g. square

[Raussendorf &Briegel 017]
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Universal gate set: Lego pieces for QC

[Raussendorf &Briegel PRL 017]

o Cluster-state QC = a set of measurement patterns

1. Can isolate wires for single-qubit gates
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Search for universal resource states

o Can other states beyond the 2D cluster state be used
for measurement-based quantum computation?

o Other known examples:

« Any other 2D graph states on regular lattices (=cluster states):
triangular, honeycomb, kagome, etc. [Van den Nest et al. ‘06]

+ MPS & PEPS framework: alternative view & further examples

o Can universal resource states be unique ground state?

[Verstraete & Cirac ‘04] [Gross & Eisert ‘07, Gross, Eisert, Schuch & Perez-Garcia ‘10]
=>» Create resources by cooling (if Hamiltonian is gapped)! [t
- Desire simple and short-ranged (nearest nbr) 2-body !
Hamiltonians
0 o
a Cluster states: not unique ground state of two-body Hamiltonians
[Nielsen ‘04]
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We will focus on the family of
Affleck-Kennedy-Lieb-Tasaki (AKLT) states

=» Unique ground states of short-ranged (nearest
nbr) 2-body Hamiltonians

=>» For certain cases (mostly 1D chains), existence of
a finite gap above the ground state can be proved

=>» But can they be useful for quantum computation?
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1D AKLT state

0 Spin-1 chain: two virtual qubits per site

Tl 100) = [1,1)
2®2 0@@ smglet

Project iljto 11) = |1,—1) 01) —[10) = [ TL) — [ 1T)
symmetric subspace

of two spin-1/2 (qubits) \ (j01) + [10))/v2 = |1,0)

[AKLT '87,'88]

A

v Can realize rotation on one logical qubit by measurement
[Gross & Eisert, PRL ‘07] [Brennen & Miyake, PRL ‘09]

> One reason: 1D AKLT state can be converted to 1D cluster state
by local measurement (and 1D cluster state can realize 1-qubit rotation)



1D AKLT state = cluster state

o Our approach uses a POVM:  2_ FlFa=Is-1 (qutcome: x, y, z)

a::E?y?Z

F, = \/g(|++><+++——><——|)

Any outcome
preserves a two-
dimensional subspace

Fo= S i,
Sp\(\‘

= \/g(|00><00+!11)<11\) T [®) — Fu[®)

|+ 4) = (]0) + i[1))/V2 [Wei, Affleck & Raussendorf '12]

> gives rise to a cluster state (alogical qubit is a domain of connected sites with same outcome)

> In a large system, cluster state has length 2/3 of AKLT




Remarks on two key points:

(1) A domain is formed by merging connected sites
with same outcome and is a logical qubit:

» Anti-ferromagnetic properties from singlets

o (1 e
1 (] E

(2) No leakage out of qubit encoding due to

> FiF,=1Is—1 (probability adds up to 1)

a:CU?y?z

» Random outcome X, y, or z indicates quantization axis



1D AKLT state can only support 1-qubit rotation,
not universal QC; What about 2D AKLT states?

(@) honeycomb (b) square-octagon
(c) ‘cross’ (d) ‘star’
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Spin-3/2 AKLT state on honeycomb

a Each site contains three virtual qubits @
singlet [01) —[10)

o Two virtual gubits on an edge form a singlet M




Spin 3/2 and three virtual qubits

o Addition of angular momenta of 3 spin-1/2’s
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o The four basis states in the symmetric subspace

3 3
1000) < §,§> <
! | . 31 o
W) = 7 1001) +[010) +]100)) = §’§> Effective 2 levels
_ of a qubit
W) = —=(|110) + [101) + [011)) — |2 —1> k

/

o Projector onto symmetric subspace

Ps,, =1000){000] + [111)(111] + [WHW| + [W){(W| + I



Spin-3/2 AKLT state on honeycomb

a Each site contains three virtual qubits e
singlet |01) — [10)

7

o Two virtual gubits on an edge form a singlet M




Spin-3/2 AKLT state on honeycomb

a Each site contains three virtual qubits e
singlet |01) — [10)

7

o Two virtual gubits on an edge form a singlet M

a Projection (Pg,) onto symmetric subspace of 3 qubits at each site
& relabeling with spin-3/2 (four-level) states

P, = |000)(000| + [111){(111| + [W)Y(W| + |[W ) (W]

3 3 3 3
1000) — ‘5, =) =55

W) = L3(|001> ~1010) < [100)) ‘g %)

W) = LB(|110> + 101} + [011)) — ’g_%>




Convert to graph states via POVM
Fe = 5 (120Gl + -3

) = —= (53 - l) [Wei Affleck &

3
2 \/6 4 Raussendorf '11;
2 13\ /3 3 3 1 1 - ‘
F,. = S I P O _ - _ - — _— (§2__= Miyake ‘11]
ot 3(2><2m+ 2>< 233) \/6(5‘” 4)
2 {13\ /3 3 3 1 1 - site index
P, = /- _><_ __><__ :_(52__) V: Si
Y 3(2 2y+ 2 21y NASCER

= Three elements satisfy: FJ  Foo+ F} Foy+Fl F,. =1,
o POVM outcome (X,y, or z) is random (a, ={x,y,z} € A for all sites v)

——

< => effective 2-level system (logical qubit = domain)
3 3
Zo | ek, o
Spﬁi Po\l\\'\a — = a,: new guantization axis
N 2 13\ /3 3 3 — 13 3 3 3
Z=[5)(5,, - [-9)( =3l T=l2{-al -2l

-> state becomes |®) — [} 4, |P)
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AKLT on honeycomb

.

gate

944
ZaZ

¥

XaX

Lol o o
S bd b

!x:z!;:‘“‘*‘*
Y.Z!Z X‘ ZalZ
atalnsate
Y Z.Z X‘Y X‘X
Rekely!

X

b

1. Random ¥, y, z outcomes

Q.!ii

‘!“!y




AKLT on hOneyCOmb 2. Merge sites to domains
(1 domain= 1 logical qubit)
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AKLT on hOneyComb 3. Even # edges = 0 edge
Odd # edges = 1 edge

(New feature in 2D)

2
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Quantum computation can be implemented
on such a (random) graph state
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» Sufficient number of wires if graph is in supercritical phase (percolatlon)



AKLT on square-octagon

o Follow the same procedure

Bond Percolation
Threshold = 0.6768
> 2/3




Merge sites to domains

o Neighboring sites with same POVM outcome
=» one domain = one qubit




Graph state: the graph

o Two domains connected by even edges = no edge
odd edges = 1 edge

y Z z




QC on the new graph

o Identify new “backbone” (may not exist on original graph)




Robustness: finite percolation threshold

0 Typical graphs are in percolated (or supercritical) phase

Pspan

Site percolation by deletion (Honeycomb) Site percolation by deletion (Square-octagon)
[Wei,Affleck & Raussendorf '11] [Wei '13]
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L2 . ¢ k-
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0o L % ] 0.2 } % mﬂ#
e, e
0 1 1 1 ‘%u. il it 0 : ! k-ml . ;
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— Pdelete
> Threshold = 1- Pygee* =1-0.33=0.67 => threshold =1-0.26=0.74

> Sufficient (macroscopic) number of traversing paths exist (supercritical)
> These AKLT states (also that on ‘cross’) are universal for QC



However, the AKLT state on the star lattice
IS NOT universal, due to frustration!

!

=» Cannot have POVM outcome
T XXX, YYYy Or zzz on a triangle

?



AKLT on star lattice

1. Random ¥, y, z outcomes




AKLT on star lattice

2. Merge sites to domains




AKLT on star lattice

3. Edge modulo 2 operation

=» Edges in triangles
are removed with 50%
(occupied with 50%)

=» Edges connecting
triangles never removed

. s N f' . / N
\\\\\\\\\\\

e e ¥

= 50% is smaller than
bond percolation threshold
(=0.5244) of Kagome

= No connected path
= AKLT not universal



AKLT states: universal resource or not?

.~ honeycomb »— Square-octagon
! ‘cross’ ) ‘star’

BB



AKLT state on square lattice?

o Whether such spin-2 state Is universal remains open

> Technical problem: trivial extension of POVM does NOT work!

F, = 2><2
F, = 2><2
F,o= [2)(2

(-
(-2
(-

. FlF, + FIF + FIF, #c-I

v =>» Leakage out of logical subspace (error)

Y
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Finite gap of spin-3/2 AKLT model?

o Hamiltonian [AKLT '87,'88]
B ~(5=3) 27 3 g 116 3 a2 16 - 23 5%)
Huar= 3 B =qg > |Sebigp(Sed ) rg65) ]
edge (7,5) edge (4,7)

o Known to have exponential decaying
correlation functions, but NOT a proof of gap

o We use tensor network methods to show the existence
of gap and its value

> See Artur Garica’s poster for details



Inferring gap of AKLT models

o Ground state is a spin singlet state;
eigenstates characterized by total |S, Sz >

o By applying an external field, can probe the gap

Z » 1D AKLT with N=8
H = HAKLT + h Sf 1.2F w w .
(
. singlet
> Schematic energy response Ty
N
0.8
s A, B, C, ... traces lowest energy
of H
E2 E 0.6
¢ First cross and the slope
=> infer E; - E, 0.4k
Eq
E, % Slope = Magnetization 0.2r
B - \ Plateau = finite gap
C
> o | ‘
h 0 0.05 0.1 0.15



1D spin-1 AKLT model

o Hamiltonian: 77 — Hrrrm + A ZS;

Haker = 5 > [S'i + S+ 5(57; - Sip1)? + gl

1

Magnetic moment per spin

Energy per spin 0

= Gap A=0.350



2D spin-3/2 AKLT on honeycomb

0 Hamiltonian:  H = Haxyr +h Yy S?

Huar= Y SV Y (5

edge (i,5) edge (i,7)

Energy per spin

0

_0.1,

-0.2f

o —0.3f
(Y]

-0.4f

_0.5,

-0.6}

0 01 02 03 04 05 06 07 08 09 1
h

= Gap A=0.10




Summary and outlook

o Several AKLT states on 2D lattices provide resources for
universal gquantum computation

o AKLT Hamiltonians on the honeycomb (and square)
are gapped (numerical evidence)

o Spin-2 AKLT state on square lattice universal?
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