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Classical memories are robust

@ Energy barrier « v/n between logical states through local moves.
@ Boltzmann: configuration x has probability oc exp(—E(x)/T).

@ Probability of flipping the whole configuration by local moves
decreases with n.




Local order parameter & decoherence

@ System has two ground states | 11 ... 1) and | {{ ... ).
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Local order parameter & decoherence

@ System has two ground states | 11 ... 1) and | {{ ... ).
o a/t... 1)+ 84l ...]) does not evolve in time.
@ Local observable o7 distinguishes them.

)
o Local order parameter o=. —@
@ Local perturbation Bo; lifts degeneracy: N AT

of 11 D+ BI 1) D e a1t )+ BB L)

@ Unknown B: -|a‘ € af ) f—> ( )
< G'ZBta*ﬁ |B|2 0 |B|2

@ Quantum superposition — Statistical mixture.
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Topological quantum order

Bravyi, Hastings, & Michalakis
@ (TQO1) System has no local order parameter.
@ (TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

— zZ_Z z
H=-Y ofof,s +03

]
The ground state manifold changes abruptly when including site 23.

@ Can we combine this spectral stability with the thermal stability of
the 2D Ising model?

@ In this talk: some evidence that it cannot be done in 2D.
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@ System with degenerate ground state manifold.
@ Prepare system in a given ground state [vg).

@ Let system evolve in contact with heat bath at temperature T for
time t.

@ Cool the system to its ground state manifold, and recover a states
close to |tg).

@ Storage time t scales with system size for T < T..

@ Quantum information science & technologies
o A system that can store quantum information coherently for
macroscopic time without active external intervention (quantum
hard drive).
@ Foundations of physics
o Coherent unitary evolution emerging as a low-energy effective
description of a fundamentally noisy evolution
o Black hole information loss paradox
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@ Kitaev's code

e Decoding problem

e 2D Commuting Projector Codes
e Thermal instability

e Open Questions
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Kitaev's code

Outline

@ Kitaev's code
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Kitaev's code
Lattice

David Poulin (Sherbrooke)

@ Two-dimensional square lattice
@ Periodic boundary conditions

B e N
- %$:“‘illﬂ”’i =N
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Kitaev's code
Hamiltonien

@ Site operator:
As = Hiev(s) Ox
> @ Plaquette operator:
T B, = Hiev(p) 0z
® H= _(ZSAS + Zp Bp)
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Kitaev's code

Hamiltonian
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Kitaev's code

Hamiltonian

° H= _(ZSAS + Zp Bp)

X
X X o VA — VA =
: [As, As] = [Bp, By] = 0
X X
X X
X X
7 z
z
z z
) (EAT(z
z z
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Kitaev's code
Hamiltonian

° H= _(ZSAS + Zp Bp)

X | X o [AS,AS/] = [Bp, Bp/] =0
D5rC @ [As,By] =0
T X : X
z > z
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Kitaev's code
Hamiltonian
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Kitaev's code
Hamiltonian

° H= _(ZSAS + Zp BP)

XX o [AS,AS/] = [Bp, Bp/] =0

D56 @ [As,By] =0

OREx @ The Hamiltonian is a sum of
2 Z commuting terms.

e Exactly solvable

I e Constant gap

25, @ Ground space |v)

o Aslth) = +|v)

o Bply) = +[)
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Kitaev's code
String operators
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Kitaev's code
String operators

7 O OO DO DO~

Z. _ i
0 Zy= Hierﬁ 0z

® [Z1,B,]=0
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Kitaev's code
String operators

" -@@%@@@@@@—

° ?1 = Hie’ﬁ OJZ
o [?1 , Bp] = 0 X
° [71 ) AS] = 0 X
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Kitaev's code
String operators

e Z = H,e71
o [Z1,B)] =0
@ [Z1,As] =0
@ [Z{,H]=0
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Kitaev's code

String operators

(] X1 Hle'y1 X z
° [X1,By] = X z

"
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Kitaev's code
String operators

° Y1 = HiE"n UIZ
o [X1,As] = 0
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Kitaev's code
String operators

X

Y, i
o X1 - HiE"/1 UZ

o [Y1,Bp]:0
o [X1,As] =0
o [Xi,H =0
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Kitaev's code
String operators

Y, i
o X1 - HiE"/1 UZ

@ [X1,B,]=0
o [X1, A =0
o [X1,H =0

@ {X{,Z1}=0
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Kitaev's code
Second set of symmetries

@ By reflecting around

the diagonal, we obtain

two new symmetry
operators
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Kitaev's code
Second set of symmetries

@ By reflecting around

the diagonal, we obtain

two new symmetry

operators
® {X5,Z5} =0.
® {Xi,Z}=0.
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@ By reflecting around

x
x
x

the diagonal, we obtain

)

x

two new symmetry

Xo

operators

® {X5,2Z,} =0.
® {Xi,Z}=0.

® [Z1,Z5]=0

@ [X1,X2] =0

N

CHEOHOHEHOHCHOHHOTE

S

David Poulin (Sherbrooke) Self-correcting quantum memories

SPQM'13

13/41



Kitaev's code
Second set of symmetries

@ By reflecting around
H H Yz X X X X X X X X X X
the diagonal, we obtain A e R A I

two new symmetry 71
operators

(*] {Y2,22} =0.

o {Y1 ,?1} =0.

o [71,?2] =0

@ [X1,X2]=0

@ [X2,Z4]=0

@ [X1,Z2]=0
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Kitaev's code
Second set of symmetries

@ By reflecting around
H H Yz X X X X X X X X X X
the diagonal, we obtain - A e P N D

two new symmetry 71
operators

(*] {Y2,22} =0.

o {Y1 ,?1} =0.

o [71,?2] =0

@ [X1,X2]=0

@ [X2,Z4]=0

@ [X1,Z2]=0
Two encoded qubits J
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Kitaev's code
Trivial cycles and ground space

° H:_(ZSAS+ZpBP) X xx ‘
@ The A et By are trivial cycles ()%
@ Trivial action on ground space

Aslv) = Bplih) = +1[4)
° As B ivi 2TOTCN
s Bp generate all trivial loops. z b z
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Kitaev's code
Trivial cycles and ground space

o H= _(ZSAS + Zp BP)
@ The A et By are trivial cycles
@ Trivial action on ground space

Aslv) = Bplih) = +1[4)
° As B ivi 2TOTCN
s Bp generate all trivial loops. z b z

Trivial loops act trivially on ground L
space J %%L
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Kitaev's code
Non-trivial cycles

@ ~¢ and 7, wrap around the
torus: they are non-trivial
cycles

=)
©
©
©
©
©
©
©
G

NI
CHEOHEHEHEHEHEHEA
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Kitaev's code
Gauge choice

® |¢) = Byl¢)
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Kitaev's code
Gauge choice

® ) = Byld)
° Zi|y)
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° ’i@ = Bp/|:/’>
@ Zi|) = Z1By|y)
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° ’i@ = Bp/’:m
® Zi|y) = Z1Byly)
o 71 521 Bp/
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Kitaev's code
Gauge choice

° ’i@ = Bp/’:m
® Zi|y) = Z1Byly)
o 71 521 Bp/
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Kitaev's code
Hamiltonian - Topology

@ One degree of freedom associated to each non-trivial cycle.
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Kitaev's code
Hamiltonian - Topology

@ One degree of freedom associated to each non-trivial cycle.

@ Operator in same homological class act identically on ground
space.

@ We encode the quantum information is those degrees of freedom:

e The information can only be modified by topologically non-trivial
operators.
o Robust when ({ — ~0)... ?

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM'13 19/41



Kitaev's code
Particle creation

@ Consider error E = o.
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Kitaev's code
Particle creation

@ Consider error E = o.

@ ¢/ anti-commutes with
adjacent plaquettes.

@ ol|y) is a -1 eigenstate of B,
and By

@ Since H=—(3sAs+ >, Bp),
ol costs 2 energy units.
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Kitaev's code
Particle creation

@ Consider error E = o.

@ ¢/ anti-commutes with
adjacent plaquettes.

@ ol|y) is a -1 eigenstate of B,
and By

@ Since H=—(3sAs+ >, Bp),
ol costs 2 energy units.

@ This error has created a pair of
magnetic particles.

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM'13 20/ 41



Kitaev's code
Particle diffusion

New error occurs on neighboring
qubit:
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Kitaev's code
Particle diffusion

New error occurs on neighboring
qubit:
@ Restores the sign of the
middle plaquette
@ Flips the sign of the right
plaquette DOROC

No net energy cost: particle has
moved }
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Kitaev's code
Error chains

@ Error chains are attached to particles,
each with given energy. §Og00)
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@ Particles can move around at no 2(
energy cost. 0OR RO
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Kitaev's code
Error chains

@ Error chains are attached to particles,
each with given energy.
@ Particles can move around at no

s
energy cost. 0ORORO

@ Error chains can be stretched freely.
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Kitaev's code
Particle annihilation

@ An error can annihilate two
particles NN
X X X
X X X
X X
X X X
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Particle annihilation

@ An error can annihilate two
particles X

@ The particle’s worldline is left
behind after fusion.
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Kitaev's code
Particle annihilation

@ An error can annihilate two
particles P OgOR0-

@ The particle’s worldline is left 3 Cm00) ax}‘@‘@y YCX}_
behind after fusion.

@ Particle fusion can leave
behind a worldline
corresponding to a logical

operation P OgCR0:N
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Kitaev's code
Particle annihilation

@ An error can annihilate two
particles P OgOR0-

@ The particle’s worldline is left 3 Cm00) @CX}‘CX}‘@Y YQ}_
behind after fusion.

@ Particle fusion can leave
behind a worldline
corresponding to a logical

operation P OgCR0:N

Memory corruption J
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Kitaev's code
Electrical particles

@ The same story holds for o, errors

2=z Y1}
@ These will create electrical particles z
located at the lattice’s vertices z
(plagquette of dual lattice). T
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Decoding problem

Outline

e Decoding problem
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Decoding problem
Error syndrome & decoding

@ An error produces defects 15 % Noise rate
(error syndrome)
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Decoding problem
Error syndrome & decoding

@ An error produces defects 15 % Noise rate
(error syndrome) g ~
@ Measure particle position, oT J?{# N
but not worldline. ® @4\ N ©)
ol ol
& | O
T | o
O]
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Decoding problem

Error syndrome & decoding

15 % Noise rate
@ An error produces defects

(error syndrome) N
@ Measure particle position, é i h )
but not worldline. (o ) ]

@ Many worldlines consistent
with defects.
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Decoding problem
Error syndrome & decoding

15 % Noise rate
@ An error produces defects

(error syndrome) ~
. . 4 N
@ Measure particle position, é P
but not worldline. -2 |G- ) P (S
@ Many worldlines consistent O | (> [
with defects. A NeEe | O
Y [ lol [ 19
o bl [d

4
<
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Decoding problem
Error syndrome & decoding

@ An error produces defects 15 % Noise rate
(error syndrome)

@ Measure particle position,
but not worldline.

@ Many worldlines consistent
with defects.

@ Worldline with different
homologies have different
effect on ground space:
MUST be distinguished.
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Decoding problem
Error syndrome & decoding

@ An error produces defects 15 % Noise rate
(error syndrome)

@ Measure particle position,
but not worldline.

@ Many worldlines consistent
with defects.

@ Worldline with different
homologies have different
effect on ground space:
MUST be distinguished.

dlel
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Decoding

Infer worldline homology from
particle location.
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Decoding problem

Threshold

0.1

0.01

Failure probability

0.001

0.0001- y . -

4 .6 8 10
Depolarization Strength %

@ Threshold noise rate ~ 8.2%.
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Decoding problem
Known self-correcting systems

@ 2D toric code has point-like electric and magnetic excitations,
ends of error strings.
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Known self-correcting systems

@ 2D toric code has point-like electric and magnetic excitations,
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Decoding problem

Known self-correcting systems

@ 2D toric code has point-like electric and magnetic excitations,
ends of error strings.
@ 3D toric code has point-like electric excitations and string-like
magnetic excitations, boundaries of error membranes.
e Z type errors are confined due to string tension.
@ 4D toric code has sting-like electric and magnetic excitations,
boundaries of error membranes.
e Z and X type errors are confined due to string tension.

4D toric code is self-correcting. J

-
—
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Decoding problem

Confinement in lower dimensions?

Main idea
Find a local hamiltonian with topological order but with confined

excitations.

@ Add an attractive potential between topological excitations.
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@ Add an attractive potential between topological excitations.
e Can be realized by coupling to bosonic field (phonons).
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Main idea
Find a local hamiltonian with topological order but with confined
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@ Add an attractive potential between topological excitations.
e Can be realized by coupling to bosonic field (phonons).
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@ Destroys topological order?
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Decoding problem

Confinement in lower dimensions?

Main idea
Find a local hamiltonian with topological order but with confined
excitations.

@ Add an attractive potential between topological excitations.
e Can be realized by coupling to bosonic field (phonons).

@ Exists a finite temperature confined phase?

@ Destroys topological order?

@ Can be realized with two-body local interactions?
@ etc.

No, no, no...
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Commuting Projector Codes
line

e 2D Commuting Projector Codes
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2D Commuting Projector Codes

Definitions

@ Ais a 2D lattice.
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2D Commuting Projector Codes
Definitions

@ Ais a 2D lattice.
@ Each vertex occupied by d-level quantum particle.
@ Hamiltonian H = — 3y -\ Px with

o Px = 0 if radius(X)> w.
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@ Hamiltonian H = — 3y -\ Px with
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o [Px, Py] =0.
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@ Hamiltonian H = — 3y -\ Px with
o Py = 0if radius(X)> w.
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@ Py are projectors (optional).
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Definitions

@ Alis a 2D lattice.
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@ Hamiltonian H = — 3y -\ Px with
o Py = 0if radius(X)> w.
o [Px, Py] =0.

@ Py are projectors (optional).
@ Code C = {v: Px|y) = |4)}
= ground space of H
= image of code projector I =[] Px
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2D Commuting Projector Codes
Definitions

@ Alis a 2D lattice.
@ Each vertex occupied by d-level quantum particle.

@ Hamiltonian H = — 3y -\ Px with
o Py = 0if radius(X)> w.
o [Px, Py] =0.

@ Py are projectors (optional).
@ Code C = {3 : Px|y)) = [¥))}
= ground space of H
= image of code projector I =[] Px
@ With proper coarse graining, we can assume that
e Ais aregular square lattice.
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2D Commuting Projector Codes
Definitions

@ Alis a 2D lattice.
@ Each vertex occupied by d-level quantum particle.

@ Hamiltonian H = — 3y -\ Px with
o Py = 0if radius(X)> w.
o [Px, Py] =0.

@ Py are projectors (optional).
@ Code C = {v: Px|y) = |4)}
= ground space of H
= image of code projector I =[] Px
@ With proper coarse graining, we can assume that

o Ais aregular square lattice.
e Each Px actson 2 x 2 cell.
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Commuting Projector Codes
Well known examples

@ Kitaev’s toric code
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2D Commuting Projector Codes
Well known examples

Kitaev’s toric code

Bombin’s topological color codes
Levin & Wen’s string-net models
Turaev-Viro models

Kitaev’'s quantum double models

°
°
°
°
°
@ Most known models with topological quantum order
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Kitaev’'s quantum double models

°
°
°
°
°
@ Most known models with topological quantum order

The first two example are simple because they are stabilizer codes.
Most things | will say are trivial to prove in this case.
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2D Commuting Projector Codes
Well known examples

Kitaev’s toric code

Bombin’s topological color codes
Levin & Wen’s string-net models
Turaev-Viro models

Kitaev’'s quantum double models
Most known models with topological quantum order

The first two example are simple because they are stabilizer codes.
Most things | will say are trivial to prove in this case.

Subsystem codes do not belong to this family.
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2D Commuting Projector Codes
Standard definitions

Correctable region

A region M C A is correctable if there exists a recovery operation R
such that R(Tryp) = p for all code states p.
M correctable < No order parameter on M < MOy MM « I.
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such that R(Tryp) = p for all code states p.
M correctable < No order parameter on M < MOy MM « I.

Minimum distance

The minimum distance d is the size of the smallest non-correctable
region.
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2D Commuting Projector Codes
Standard definitions

Correctable region

A region M C A is correctable if there exists a recovery operation R
such that R(Tryp) = p for all code states p.
M correctable < No order parameter on M < MOy MM « I.

Minimum distance

The minimum distance d is the size of the smallest non-correctable
region.

Logical operator
Operator L such that L|+) is a code state for any code state |4).
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Thermal instability

Outline

0 Thermal instability
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Thermal instability
Statement of the lemma

Holographic disentangling lemma (Bravyi, DP, Terhal)

Let M C A be a correctable region and suppose that its boundary oM
is also correctable. Then, there exists a unitary operator Uy, acting
only on the boundary of M such that, for any code state |¢),

Usmlt)) = lom) @ |9

for some fixed state |¢y) on M.
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Thermal instability
With pictures
@ Let M be correctable. @

M=AWM
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Thermal instability
With pictures
@ Let M be correctable.
@ Assume 9M is correctable.

@ letM=AUB,M=CuUD,and 9M = BU C.

M=AWM

@ There exists a unitary transformation Uy, such that, for any

) ecC
Upmlv) = |om) @ [¢bg)

where |¢y) is the same for all |¢).
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Thermal instability
With pictures
@ Let M be correctable.
@ Assume 9M is correctable.

@ letM=AUB,M=CuUD,and 9M = BU C.

M=AWM

@ There exists a unitary transformation Uy, such that, for any

) ecC
Upmlv) = |om) @ [¢bg)

where |¢y) is the same for all |¢).

For a trivial code Trl1 = 1, every region is correctable, so we recover
the area law S(M) < |9M| for commuting Hamiltonians of Wolf,
Verstraete, Hastings, and Cirac.
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Thermal instability
Statement of the result

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like
region.

@ Exists Uy such that Uy|v) = [¢').
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Thermal instability
Statement of the result

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like
region.

@ Exists Uy such that Uy|v) = [¢').

° [¢) # [¢¥).
° [¢),|¢) eC.

@ Well known for Kitaev’s toric code.
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Thermal instability
Statement of the result
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Statement of the result

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like
region.

@ Exists Uy such that Uy|v) = [¢').

° [¢) # [¢¥).
° [¢),|¢) eC.

@ Well known for Kitaev’s toric code.
@ Intuitive for known models that support anyons:

e The ground state can be changed by dragging an anyon around a
topologically non-trivial loop.

e This process is realized on a string, and generated a logical
operation.
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Thermal instability
Thermal instability

@ Local commuting projector codes have string-like logical
operators.
@ If this logical operator is a sequence of local unitary operators,
system is thermally unstable.
@ We can sequentially apply the transformation to create, move, and
fuse a point-like excitation.

@ What happens in more general cases?

Main result (Landon-Cardinal & DP)

The minimum set of conditions required to prove spectral stability imply
the existence of a sequence of local maps that corrupt the system at
an energy cost bounded by a constant.
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@ Apply random unitary on sites 1 & 2.

@ Measure Pq»
[4) |fP12:090t01.

© Apply random unitary on site 3.

© Measure Pos
o If P.3 =0goto 3.
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@ Only a constant amount of energy at any given time.
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@ Apply random unitary on sites 1 & 2.
@ Measure Pq»
[4) |fP12:090t01.
© Apply random unitary on site 3.
© Measure Pos
o If P.3 =0goto 3.
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@ Only a constant amount of energy at any given time.
@ No need to backtrack.
@ Number of steps  lattice linear size.
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@ Apply random unitary on sites 1 & 2.

@ Measure Pq»
[4) |fP12:090t01.

© Apply random unitary on site 3.

© Measure Pos
o If P.3 =0goto 3.

o
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@ Only a constant amount of energy at any given time.

@ No need to backtrack.

@ Number of steps « lattice linear size.

@ If successful, final state is corrupted. (not trivial)
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Open Questions

@ Self-correcting quantum memory
e Stable spectrum = topological order
o Finite temperature phase = energy barrier
@ Conflict in two spacial dimensions.
@ Many connections between coding theory and many-body physics

Decoding problem < Renormalization group methods
Fault-tolerant threshold < ordered-disordered transition

Error correction < Topological order (no local order parameter)
Holographic disentangling lemma < Area law
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