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Classical memories are robust

0=

1=

Energy barrier ∝ √n between logical states through local moves.
Boltzmann: configuration x has probability ∝ exp(−E(x)/T ).
Probability of flipping the whole configuration by local moves
decreases with n.
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Local order parameter & decoherence

System has two ground states | ↑↑ . . . ↑〉 and | ↓↓ . . . ↓〉.
α| ↑↑ . . . ↑〉+ β| ↓↓ . . . ↓〉 does not evolve in time.

Local observable σz
i distinguishes them.

Local order parameter σz .
Local perturbation Bσz lifts degeneracy:

α| ↑↑ . . . ↑〉+ β| ↓↓ . . . ↓〉 t−→ e−iBtα| ↑↑ . . . ↑〉+ eiBtβ| ↓↓ . . . ↓〉

Unknown B:
(

|α|2 e−i2Btαβ∗

ei2Btα∗β |β|2
) ∫

dB−−−→
(
|α|2 0
0 |β|2

)
Quantum superposition→ Statistical mixture.
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Topological quantum order

Bravyi, Hastings, & Michalakis

(TQO1) System has no local order parameter.
(TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

H = −
∑

i

σz
i σ

z
i+1 + σz

23

The ground state manifold changes abruptly when including site 23.
Can we combine this spectral stability with the thermal stability of
the 2D Ising model?
In this talk: some evidence that it cannot be done in 2D.
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Motivation

System with degenerate ground state manifold.
Prepare system in a given ground state |ψg〉.
Let system evolve in contact with heat bath at temperature T for
time t .
Cool the system to its ground state manifold, and recover a states
close to |ψg〉.
Storage time t scales with system size for T ≤ T∗.

Quantum information science & technologies
A system that can store quantum information coherently for
macroscopic time without active external intervention (quantum
hard drive).

Foundations of physics
Coherent unitary evolution emerging as a low-energy effective
description of a fundamentally noisy evolution
Black hole information loss paradox
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Outline

1 Kitaev’s code

2 Decoding problem

3 2D Commuting Projector Codes

4 Thermal instability

5 Open Questions
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Kitaev’s code

Lattice

l

l

Two-dimensional square lattice
Periodic boundary conditions
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Kitaev’s code

Hamiltonien

X

X
X

Z
Z

Z
Z

X

Site operator:
As =

∏
i∈v(s) σ

i
x

Plaquette operator:
Bp =

∏
i∈v(p) σ

i
z

H = −(
∑

s As +
∑

p Bp)
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Kitaev’s code

Hamiltonian

X

X
X

Z

Z
Z

Z

Z
Z

Z

X

X

X
Z

XX

Z
Z

Z

Z

X

X
XX

H = −(
∑

s As +
∑

p Bp)

[As,As′ ] = [Bp,Bp′ ] = 0
[As,Bp] = 0
The Hamiltonian is a sum of
commuting terms.

Exactly solvable
Constant gap

Ground space |ψ〉
As|ψ〉 = +|ψ〉
Bp|ψ〉 = +|ψ〉
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Kitaev’s code

String operators

Z 1 =
∏

i∈γ1
σi

z

[Z 1,Bp] = 0
[Z 1,As] = 0
[Z 1,H] = 0

Z1
γ1 Z Z Z Z Z Z Z Z Z Z
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Kitaev’s code

Second set of symmetries

By reflecting around
the diagonal, we obtain
two new symmetry
operators
{X 2,Z 2} = 0.
{X 1,Z 1} = 0.
[Z 1,Z 2] = 0
[X 1,X 2] = 0
[X 2,Z 1] = 0
[X 1,Z 2] = 0

Two encoded qubits

Z2

X2
γ′2

γ2

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

XXXXXXXXXX
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Kitaev’s code

Trivial cycles
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Kitaev’s code

Non-trivial cycles
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Kitaev’s code

Trivial cycles and ground space

H = −(
∑

s As +
∑

p Bp)

The As et Bp are trivial cycles
Trivial action on ground space
As|ψ〉 = Bp|ψ〉 = +1|ψ〉
As Bp generate all trivial loops.

Trivial loops act trivially on ground
space

X

X
XX

Z
Z

Z
Z
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Kitaev’s code

Non-trivial cycles

γ1 and γ2 wrap around the
torus: they are non-trivial
cycles

Z1

γ1

Z2

γ2

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z Z Z Z Z Z Z Z Z Z
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Kitaev’s code

Gauge choice

|ψ〉 = Bp′ |ψ〉
Z 1|ψ〉 = Z 1Bp′ |ψ〉
Z 1 ≡ Z 1Bp′

≡ Z 1Bp′Bp′′

≡ Z 1
∏

p Bp

Z1
γ1

p′
Z Z Z Z Z Z Z Z Z Z
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Kitaev’s code

Hamiltonian - Topology

One degree of freedom associated to each non-trivial cycle.
Operator in same homological class act identically on ground
space.
We encode the quantum information is those degrees of freedom:

The information can only be modified by topologically non-trivial
operators.
Robust when (`→∞)... ?
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Kitaev’s code

Particle creation

Consider error E = σi
x .

σi
x anti-commutes with

adjacent plaquettes.
σi

x |ψ〉 is a -1 eigenstate of Bp
and Bp′

Since H = −(
∑

s As +
∑

p Bp),
σi

x costs 2 energy units.
This error has created a pair of
magnetic particles.

X
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Kitaev’s code

Particle diffusion

New error occurs on neighboring
qubit:

Restores the sign of the
middle plaquette
Flips the sign of the right
plaquette

No net energy cost: particle has
moved

X1 1
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Kitaev’s code

Error chains

Error chains are attached to particles,
each with given energy.
Particles can move around at no
energy cost.
Error chains can be stretched freely.

X X1

1

X

X
X X

X
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Kitaev’s code

Particle annihilation

An error can annihilate two
particles
The particle’s worldline is left
behind after fusion.
Particle fusion can leave
behind a worldline
corresponding to a logical
operation

Memory corruption
X X

X
X XX

X

X X
X

X XX

X

X

1

1
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Kitaev’s code

Electrical particles

The same story holds for σz errors
These will create electrical particles
located at the lattice’s vertices
(plaquette of dual lattice).

Z
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1

Z

Z
Z Z

Z
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Decoding problem

Outline

1 Kitaev’s code

2 Decoding problem

3 2D Commuting Projector Codes

4 Thermal instability

5 Open Questions
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Decoding problem

Error syndrome & decoding

An error produces defects
(error syndrome)
Measure particle position,
but not worldline.
Many worldlines consistent
with defects.
Worldline with different
homologies have different
effect on ground space:
MUST be distinguished.

Decoding

Infer worldline homology from
particle location.

15 % Noise rate
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Worldline with different
homologies have different
effect on ground space:
MUST be distinguished.
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Infer worldline homology from
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Decoding problem

Threshold
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Decoding problem

Known self-correcting systems

2D toric code has point-like electric and magnetic excitations,
ends of error strings.
3D toric code has point-like electric excitations and string-like
magnetic excitations, boundaries of error membranes.

Z type errors are confined due to string tension.
4D toric code has sting-like electric and magnetic excitations,
boundaries of error membranes.

Z and X type errors are confined due to string tension.

4D toric code is self-correcting.
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Decoding problem

Confinement in lower dimensions?

Main idea
Find a local hamiltonian with topological order but with confined
excitations.

Add an attractive potential between topological excitations.
Can be realized by coupling to bosonic field (phonons).

Exists a finite temperature confined phase?
Destroys topological order?
Can be realized with two-body local interactions?
etc.

No, no, no...
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2D Commuting Projector Codes

Outline

1 Kitaev’s code

2 Decoding problem

3 2D Commuting Projector Codes

4 Thermal instability

5 Open Questions
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2D Commuting Projector Codes

Definitions

Λ is a 2D lattice.
Each vertex occupied by d-level quantum particle.
Hamiltonian H = −∑X⊂Λ PX with

PX = 0 if radius(X )≥ w .
[PX ,PY ] = 0.
PX are projectors (optional).

Code C = {ψ : PX |ψ〉 = |ψ〉}
= ground space of H
= image of code projector Π =

∏
X PX

With proper coarse graining, we can assume that
Λ is a regular square lattice.
Each PX acts on 2× 2 cell.
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2D Commuting Projector Codes

Well known examples

Kitaev’s toric code
Bombin’s topological color codes
Levin & Wen’s string-net models
Turaev-Viro models
Kitaev’s quantum double models
Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes.
Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
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2D Commuting Projector Codes

Standard definitions

Correctable region

A region M ⊂ Λ is correctable if there exists a recovery operation R
such that R(TrMρ) = ρ for all code states ρ.
M correctable⇔ No order parameter on M ⇔ ΠOMΠ ∝ Π.

Minimum distance
The minimum distance d is the size of the smallest non-correctable
region.

Logical operator

Operator L such that L|ψ〉 is a code state for any code state |ψ〉.
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Thermal instability

Outline

1 Kitaev’s code

2 Decoding problem

3 2D Commuting Projector Codes

4 Thermal instability

5 Open Questions
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Thermal instability

Statement of the lemma

Holographic disentangling lemma (Bravyi, DP, Terhal)
Let M ⊂ Λ be a correctable region and suppose that its boundary ∂M
is also correctable. Then, there exists a unitary operator U∂M acting
only on the boundary of M such that, for any code state |ψ〉,

U∂M |ψ〉 = |φM〉 ⊗ |ψ′M〉

for some fixed state |φM〉 on M.
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Thermal instability

With pictures

Let M be correctable.
Assume ∂M is correctable.
Let M = A ∪ B, M = C ∪ D, and ∂M = B ∪ C.

M

M = Λ\M

There exists a unitary transformation U∂M such that, for any
|ψ〉 ∈ C

U∂M |ψ〉 = |φM〉 ⊗ |ψ′M〉
where |φM〉 is the same for all |ψ〉.

Remark
For a trivial code TrΠ = 1, every region is correctable, so we recover
the area law S(M) ≤ |∂M| for commuting Hamiltonians of Wolf,
Verstraete, Hastings, and Cirac.
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M

M = Λ\M

A
B
C
D

There exists a unitary transformation U∂M such that, for any
|ψ〉 ∈ C

U∂M |ψ〉 = |φM〉 ⊗ |ψ′M〉
where |φM〉 is the same for all |ψ〉.

Remark
For a trivial code TrΠ = 1, every region is correctable, so we recover
the area law S(M) ≤ |∂M| for commuting Hamiltonians of Wolf,
Verstraete, Hastings, and Cirac.

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM’13 36 / 41



Thermal instability

Statement of the result

String-like logical operators (Haah, Preskill)
There exists a non-trivial logical operator supported on a string-like
region.

Exists UM such that UM |ψ〉 = |ψ′〉.
|ψ〉 6= |ψ′〉.
|ψ〉, |ψ′〉 ∈ C.

Λ

M

Well known for Kitaev’s toric code.
Intuitive for known models that support anyons:

The ground state can be changed by dragging an anyon around a
topologically non-trivial loop.
This process is realized on a string, and generated a logical
operation.
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Thermal instability

Thermal instability

Local commuting projector codes have string-like logical
operators.
If this logical operator is a sequence of local unitary operators,
system is thermally unstable.

We can sequentially apply the transformation to create, move, and
fuse a point-like excitation.

What happens in more general cases?

Main result (Landon-Cardinal & DP)
The minimum set of conditions required to prove spectral stability imply
the existence of a sequence of local maps that corrupt the system at
an energy cost bounded by a constant.

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM’13 38 / 41



Thermal instability

Thermal instability

Local commuting projector codes have string-like logical
operators.
If this logical operator is a sequence of local unitary operators,
system is thermally unstable.

We can sequentially apply the transformation to create, move, and
fuse a point-like excitation.

What happens in more general cases?

Main result (Landon-Cardinal & DP)
The minimum set of conditions required to prove spectral stability imply
the existence of a sequence of local maps that corrupt the system at
an energy cost bounded by a constant.

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM’13 38 / 41



Thermal instability

Thermal instability

Local commuting projector codes have string-like logical
operators.
If this logical operator is a sequence of local unitary operators,
system is thermally unstable.

We can sequentially apply the transformation to create, move, and
fuse a point-like excitation.

What happens in more general cases?

Main result (Landon-Cardinal & DP)
The minimum set of conditions required to prove spectral stability imply
the existence of a sequence of local maps that corrupt the system at
an energy cost bounded by a constant.

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM’13 38 / 41



Thermal instability

Thermal instability

Local commuting projector codes have string-like logical
operators.
If this logical operator is a sequence of local unitary operators,
system is thermally unstable.

We can sequentially apply the transformation to create, move, and
fuse a point-like excitation.

What happens in more general cases?

Main result (Landon-Cardinal & DP)
The minimum set of conditions required to prove spectral stability imply
the existence of a sequence of local maps that corrupt the system at
an energy cost bounded by a constant.

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM’13 38 / 41



Thermal instability

Thermal instability

Local commuting projector codes have string-like logical
operators.
If this logical operator is a sequence of local unitary operators,
system is thermally unstable.

We can sequentially apply the transformation to create, move, and
fuse a point-like excitation.

What happens in more general cases?

Main result (Landon-Cardinal & DP)
The minimum set of conditions required to prove spectral stability imply
the existence of a sequence of local maps that corrupt the system at
an energy cost bounded by a constant.

David Poulin (Sherbrooke) Self-correcting quantum memories SPQM’13 38 / 41



Thermal instability

Noise model

1 2 k

1 Apply random unitary on sites 1 & 2.
2 Measure P12

If P12 = 0 go to 1.
3 Apply random unitary on site 3.
4 Measure P23

If P23 = 0 go to 3.

Only a constant amount of energy at any given time.
No need to backtrack.
Number of steps ∝ lattice linear size.
If successful, final state is corrupted. (not trivial)
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Open Questions

Outline

1 Kitaev’s code

2 Decoding problem

3 2D Commuting Projector Codes

4 Thermal instability

5 Open Questions
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Open Questions

Self-correcting quantum memory
Stable spectrum⇒ topological order
Finite temperature phase⇒ energy barrier

Conflict in two spacial dimensions.
Many connections between coding theory and many-body physics

Decoding problem⇔ Renormalization group methods
Fault-tolerant threshold⇔ ordered-disordered transition
Error correction⇔ Topological order (no local order parameter)
Holographic disentangling lemma⇔ Area law
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