The search for a new, self-correcting phase of matter

David Poulin

Département de Physique Université de Sherbrooke

Statistical Physics of Quantum Matter Taipei, Taiwan, July 2013

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$
- Probability of flipping the whole configuration by local moves decreases with *n*.

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$
- Probability of flipping the whole configuration by local moves decreases with *n*.

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with *n*.

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$
- Probability of flipping the whole configuration by local moves decreases with *n*.

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$
- Probability of flipping the whole configuration by local moves decreases with *n*.

• Energy barrier $\propto \sqrt{n}$ between logical states through local moves.

- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with *n*.

• Energy barrier $\propto \sqrt{n}$ between logical states through local moves.

- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with *n*.

• Energy barrier $\propto \sqrt{n}$ between logical states through local moves.

- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$
- Probability of flipping the whole configuration by local moves decreases with *n*.

• Energy barrier $\propto \sqrt{n}$ between logical states through local moves.

- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$
- Probability of flipping the whole configuration by local moves decreases with *n*.

• Energy barrier $\propto \sqrt{n}$ between logical states through local moves.

• Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.

• Probability of flipping the whole configuration by local moves decreases with *n*.

• Energy barrier $\propto \sqrt{n}$ between logical states through local moves.

- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with *n*.

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with *n*.

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

- $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.
- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z .
- Local perturbation $B\sigma_z$ lifts degeneracy:

$|\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\beta|\downarrow\downarrow\ldots\downarrow\rangle\stackrel{t}{\rightarrow}e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle+e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$

• Unknown B: $\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$ • Quantum superposition \rightarrow Statistical mixture.

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

- $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.
- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z .
- Local perturbation $B\sigma_z$ lifts degeneracy:

$|\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\beta|\downarrow\downarrow\ldots\downarrow\rangle\stackrel{t}{\rightarrow}e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle+e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$

• Unknown $B: \begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

- $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.
- Local observable σ_i^z distinguishes them.

• Local order parameter σ^z .

• Local perturbation $B\sigma_z$ lifts degeneracy:

 $|\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\beta|\downarrow\downarrow\ldots\downarrow\rangle\stackrel{t}{\rightarrow}e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle+e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$

• Unknown B: $\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$ • Quantum superposition \rightarrow Statistical mixture.

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

- $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.
- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z .
- Local perturbation $B\sigma_z$ lifts degeneracy:

 $|\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\beta|\downarrow\downarrow\ldots\downarrow\rangle\stackrel{t}{\rightarrow}e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle+e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$

• Unknown B: $\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$ • Quantum superposition \rightarrow Statistical mixture.

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

- $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.
- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z .
- Local perturbation $B\sigma_z$ lifts degeneracy:

 $\alpha|\uparrow\uparrow\dots\uparrow\rangle+\beta|\downarrow\downarrow\dots\downarrow\rangle\stackrel{t}{\rightarrow}e^{-iBt}\alpha|\uparrow\uparrow\dots\uparrow\rangle+e^{iBt}\beta|\downarrow\downarrow\dots\downarrow\rangle$

• Unknown B: $\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

• $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.

- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z .
- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\overbrace{2B} |\uparrow\uparrow \dots \uparrow\rangle$$

$$\alpha|\uparrow\uparrow\dots\uparrow\rangle+\beta|\downarrow\downarrow\dots\downarrow\rangle\xrightarrow{t}\boldsymbol{e}^{-i\boldsymbol{B}t}\alpha|\uparrow\uparrow\dots\uparrow\rangle+\boldsymbol{e}^{i\boldsymbol{B}t}\beta|\downarrow\downarrow\dots\downarrow\rangle$$

• Unknown B: $\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$ • Quantum superposition \rightarrow Statistical mixture.

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

• $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.

- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z .
- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\overbrace{2B} |\uparrow\uparrow\uparrow\dots\uparrow\rangle$$

$$\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\beta|\downarrow\downarrow\ldots\downarrow\rangle\xrightarrow{t}\boldsymbol{e}^{-i\boldsymbol{B}t}\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\boldsymbol{e}^{i\boldsymbol{B}t}\beta|\downarrow\downarrow\ldots\downarrow\rangle$$

• Unknown B: $\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$

• Quantum superposition \rightarrow Statistical mixture.

• System has two ground states $|\uparrow\uparrow\dots\uparrow\rangle$ and $|\downarrow\downarrow\dots\downarrow\rangle$.

• $\alpha | \uparrow \uparrow \dots \uparrow \rangle + \beta | \downarrow \downarrow \dots \downarrow \rangle$ does not evolve in time.

- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z .
- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\overbrace{2B} |\uparrow\uparrow\uparrow\dots\uparrow\rangle$$

$$\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\beta|\downarrow\downarrow\ldots\downarrow\rangle\xrightarrow{t}\boldsymbol{e}^{-i\boldsymbol{B}t}\alpha|\uparrow\uparrow\ldots\uparrow\rangle+\boldsymbol{e}^{i\boldsymbol{B}t}\beta|\downarrow\downarrow\ldots\downarrow\rangle$$

• Unknown B: $\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$

• Quantum superposition \rightarrow Statistical mixture.

Bravyi, Hastings, & Michalakis

• (TQO1) System has no local order parameter.

(TQO2) System is locally consistent.

The system has a stable spectrum. Long lived memory at zero temperature.

$$H = -\sum_{i} \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z$$

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum. Long lived memory at zero temperature.

$$H = -\sum_{i} \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z$$

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum. Long lived memory at zero temperature.

$$H = -\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \sigma_{23}^{z}$$

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum. Long lived memory at zero temperature.

$$H = -\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \sigma_{23}^{z}$$

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum. Long lived memory at zero temperature.

$$H = -\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \sigma_{23}^{z}$$

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum. Long lived memory at zero temperature.

$$H = -\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \sigma_{23}^{z}$$

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum. Long lived memory at zero temperature.

$$H = -\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \sigma_{23}^{z}$$

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to $|\psi_g\rangle$.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to $|\psi_g\rangle$.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to $|\psi_g\rangle$.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to $|\psi_g\rangle$.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to $|\psi_g\rangle$.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to |ψ_g⟩.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to |ψ_g⟩.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to |ψ_g⟩.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox
Motivation

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to |ψ_g⟩.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

Motivation

- System with degenerate ground state manifold.
- Prepare system in a given ground state $|\psi_g\rangle$.
- Let system evolve in contact with heat bath at temperature *T* for time *t*.
- Cool the system to its ground state manifold, and recover a states close to |ψ_g⟩.
- Storage time *t* scales with system size for $T \leq T_*$.
- Quantum information science & technologies
 - A system that can store quantum information coherently for macroscopic time without active external intervention (quantum hard drive).
- Foundations of physics
 - Coherent unitary evolution emerging as a low-energy effective description of a fundamentally noisy evolution
 - Black hole information loss paradox

2 Decoding problem

- 3 2D Commuting Projector Codes
- 4 Thermal instability

5 Open Questions

Outline

Kitaev's code

- Decoding problem
- 3 2D Commuting Projector Codes
- Thermal instability
- Open Questions

Lattice

- Two-dimensional square lattice
- Periodic boundary conditions

- Site operator: $A_s = \prod_{i \in v(s)} \sigma_x^i$
- Plaquette operator: $B_p = \prod_{i \in v(p)} \sigma_z^i$

•
$$H = -(\sum_s A_s + \sum_p B_p)$$

Hamiltonien

- Site operator: $A_s = \prod_{i \in v(s)} \sigma_x^i$
- Plaquette operator: $B_p = \prod_{i \in v(p)} \sigma_z^i$
- $H = -(\sum_s A_s + \sum_p B_p)$

• Site operator:

$$A_{s} = \prod_{i \in v(s)} \sigma'_{x}$$

• Plaquette operator:

$$B_{p} = \prod_{i \in v(p)} \sigma_{z}^{i}$$

•
$$H = -(\sum_s A_s + \sum_p B_p)$$

- $H = -(\sum_s A_s + \sum_p B_p)$
- $[A_s, A_{s'}] = [B_p, B_{p'}] = 0$
- $[A_s, B_\rho] = 0$
- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
- Ground space $|\psi\rangle$
 - $A_{s}|\psi
 angle=+|\psi
 angle$
 - $B_{
 m p}|\psi
 angle=+|\psi
 angle$

• $H = -(\sum_s A_s + \sum_p B_p)$ • $[A_s, A_{s'}] = [B_p, B_{p'}] = 0$

- $[A_s, B_p] = 0$
- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
- Ground space $|\psi\rangle$
 - $A_{s}|\psi
 angle=+|\psi
 angle$
 - $B_p |\psi
 angle = + |\psi
 angle$

- $H = -(\sum_s A_s + \sum_p B_p)$
- $[A_{s}, A_{s'}] = [B_{p}, B_{p'}] = 0$
- $[A_s, B_p] = 0$
- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
- Ground space $|\psi\rangle$
 - $A_{s}|\psi
 angle=+|\psi
 angle$
 - $B_{
 m p}|\psi
 angle=+|\psi
 angle$

• $H = -(\sum_s A_s + \sum_p B_p)$

•
$$[A_s, A_{s'}] = [B_p, B_{p'}] = 0$$

•
$$[A_s, B_p] = 0$$

- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
- Ground space $|\psi\rangle$ • $A_s|\psi\rangle = +|\psi\rangle$ • $B_p|\psi\rangle = +|\psi\rangle$

• $H = -(\sum_s A_s + \sum_p B_p)$

•
$$[A_s, A_{s'}] = [B_p, B_{p'}] = 0$$

•
$$[A_s, B_p] = 0$$

- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
- Ground space $|\psi\rangle$

•
$$A_s |\psi\rangle = + |\psi\rangle$$

•
$$B_{
m p}|\psi
angle=+|\psi
angle$$

• $H = -(\sum_s A_s + \sum_p B_p)$

•
$$[A_s, A_{s'}] = [B_p, B_{p'}] = 0$$

•
$$[A_s, B_p] = 0$$

- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
- Ground space $|\psi\rangle$

•
$$A_{s}|\psi\rangle = +|\psi\rangle$$

•
$$B_{\rho}|\psi\rangle = +|\psi\rangle$$

String operators

String operators

String operators

- $[\overline{Z}_1, B_p] = 0$
- $[\overline{Z}_1, A_s] = 0$

• $[\overline{Z}_1, H] = 0$

String operators

•
$$\overline{Z}_1 = \prod_{i \in \gamma_1} \sigma_z^i$$

•
$$[\overline{Z}_1, B_p] = 0$$

•
$$[\overline{Z}_1, A_s] = 0$$

•
$$[\overline{Z}_1, H] = 0$$

String operators

String operators

• $\overline{X}_1 = \prod_{i \in \gamma_1} \sigma_z^i$ • $[\overline{X}_1, B_p] = 0$ • $[\overline{X}_1, A_s] = 0$ • $[\overline{X}_1, H] = 0$ • $\{\overline{X}_1, \overline{Z}_1\} = 0$

String operators

•
$$\overline{X}_1 = \prod_{i \in \gamma_1} \sigma_z^i$$

• $[\overline{X}_1, B_p] = 0$

•
$$[\overline{X}_1, A_s] = 0$$

•
$$[\overline{X}_1, H] = 0$$

• $\{\overline{X}_1, \overline{Z}_1\} = 0$

String operators

•
$$\overline{X}_1 = \prod_{i \in \gamma_1} \sigma_z^i$$

$$\bullet \ [\overline{X}_1, B_p] = 0$$

$$\bullet \ [\overline{X}_1, A_s] = 0$$

•
$$[\overline{X}_1, H] = 0$$

• $\{\overline{X}_1, \overline{Z}_1\} = 0$

String operators

•
$$\overline{X}_1 = \prod_{i \in \gamma_1} \sigma_z^i$$

• $[\overline{X}_1, B_\rho] = 0$
• $[\overline{X}_1, A_s] = 0$
• $[\overline{X}_1, H] = 0$
• $\{\overline{X}_1, \overline{Z}_1\} = 0$

Second set of symmetries

- By reflecting around the diagonal, we obtain two new symmetry operators
- $\{\overline{X}_2,\overline{Z}_2\}=0.$
- $\{\overline{X}_1, \overline{Z}_1\} = 0.$
- $[\overline{Z}_1, \overline{Z}_2] = 0$
- $[\overline{X}_1, \overline{X}_2] = 0$
- $[\overline{X}_2, \overline{Z}_1] = 0$
- $[\overline{X}_1, \overline{Z}_2] = 0$

Second set of symmetries

 By reflecting around the diagonal, we obtain two new symmetry operators

•
$$\{\overline{X}_2,\overline{Z}_2\}=0.$$

- $\{\overline{X}_1, \overline{Z}_1\} = 0.$
- $[\overline{Z}_1, \overline{Z}_2] = 0$

•
$$[\overline{X}_1, \overline{X}_2] = 0$$

- $[\overline{X}_2, \overline{Z}_1] = 0$
- $[\overline{X}_1, \overline{Z}_2] = 0$

Second set of symmetries

 By reflecting around the diagonal, we obtain two new symmetry operators

•
$$\{\overline{X}_2,\overline{Z}_2\}=0.$$

•
$$\{\overline{X}_1,\overline{Z}_1\}=0.$$

- $[\overline{Z}_1, \overline{Z}_2] = 0$
- $[\overline{X}_1, \overline{X}_2] = 0$
- $[\overline{X}_2, \overline{Z}_1] = 0$
- $[\overline{X}_1, \overline{Z}_2] = 0$

Second set of symmetries

 By reflecting around the diagonal, we obtain two new symmetry operators

•
$$\{\overline{X}_2,\overline{Z}_2\}=0.$$

•
$$\{\overline{X}_1,\overline{Z}_1\}=0.$$

- $[\overline{Z}_1,\overline{Z}_2]=0$
- $[\overline{X}_1, \overline{X}_2] = 0$
- $[\overline{X}_2, \overline{Z}_1] = 0$
- $[\overline{X}_1, \overline{Z}_2] = 0$

Second set of symmetries

 By reflecting around the diagonal, we obtain two new symmetry operators

•
$$\{\overline{X}_2,\overline{Z}_2\}=0$$

•
$$\{\overline{X}_1,\overline{Z}_1\}=0.$$

•
$$[\overline{Z}_1, \overline{Z}_2] = 0$$

•
$$[\overline{X}_1, \overline{X}_2] = 0$$

•
$$[\overline{X}_2, \overline{Z}_1] = 0$$

• $[\overline{X}_1, \overline{Z}_2] = 0$

Second set of symmetries

 By reflecting around the diagonal, we obtain two new symmetry operators

•
$$\{\overline{X}_2,\overline{Z}_2\}=0.$$

•
$$\{\overline{X}_1,\overline{Z}_1\}=0.$$

•
$$[\overline{Z}_1, \overline{Z}_2] = 0$$

•
$$[\overline{X}_1, \overline{X}_2] = 0$$

•
$$[\overline{X}_2, \overline{Z}_1] = 0$$

• $[\overline{X}_1, \overline{Z}_2] = 0$

Non-trivial cycles

Non-trivial cycles

Non-trivial cycles

Non-trivial cycles

David Poulin (Sherbrooke)

Trivial cycles and ground space

• $H = -(\sum_s A_s + \sum_p B_p)$

• The A_s et B_p are trivial cycles

• Trivial action on ground space $A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle$

• $A_s B_p$ generate all trivial loops.

Trivial cycles and ground space

• $H = -(\sum_{s} A_{s} + \sum_{p} B_{p})$

• The A_s et B_p are trivial cycles

- Trivial action on ground space $A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle$
- $A_s B_p$ generate all trivial loops.

Trivial cycles and ground space

- $H = -(\sum_s A_s + \sum_p B_p)$
- The A_s et B_p are trivial cycles
- Trivial action on ground space $A_s|\psi\rangle=B_p|\psi
 angle=+1|\psi
 angle$

• $A_s B_p$ generate all trivial loops.

Trivial cycles and ground space

- $H = -(\sum_s A_s + \sum_p B_p)$
- The A_s et B_p are trivial cycles
- Trivial action on ground space $A_s|\psi\rangle=B_p|\psi
 angle=+1|\psi
 angle$
- A_s B_p generate all trivial loops.

Trivial cycles and ground space

- $H = -(\sum_s A_s + \sum_p B_p)$
- The A_s et B_p are trivial cycles
- Trivial action on ground space $A_s|\psi\rangle=B_p|\psi
 angle=+1|\psi
 angle$
- A_s B_p generate all trivial loops.

Trivial cycles and ground space

- $H = -(\sum_s A_s + \sum_p B_p)$
- The A_s et B_p are trivial cycles
- Trivial action on ground space $A_s|\psi\rangle=B_p|\psi
 angle=+1|\psi
 angle$
- A_s B_p generate all trivial loops.

Trivial cycles and ground space

- $H = -(\sum_s A_s + \sum_p B_p)$
- The A_s et B_p are trivial cycles
- Trivial action on ground space $A_s|\psi\rangle=B_p|\psi
 angle=+1|\psi
 angle$
- A_s B_p generate all trivial loops.

Non-trivial cycles

 γ₁ and γ₂ wrap around the torus: they are non-trivial cycles

• $|\psi\rangle = B_{p'}|\psi\rangle$ • $\overline{Z}_1|\psi\rangle = \overline{Z}_1 B_{p'}|\psi\rangle$ • $\overline{Z}_1 \equiv \overline{Z}_1 B_{p'}$ $\equiv \overline{Z}_1 B_{p'} B_{p''}$ $\equiv \overline{Z}_1 \prod_p B_p$

• $|\psi\rangle = B_{p'}|\psi\rangle$ • $\overline{Z}_1|\psi\rangle = \overline{Z}_1 B_{p'}|\psi\rangle$ • $\overline{Z}_1 \equiv \overline{Z}_1 B_{p'}$ $\equiv \overline{Z}_1 B_{p'} B_{p''}$ $\equiv \overline{Z}_1 \prod_p B_p$

•
$$|\psi\rangle = B_{p'}|\psi\rangle$$

• $\overline{Z}_1|\psi\rangle = \overline{Z}_1 B_{p'}|\psi\rangle$
• $\overline{Z}_1 \equiv \overline{Z}_1 B_{p'}$
 $\equiv \overline{Z}_1 B_{p'} B_{p''}$
 $\equiv \overline{Z}_1 \prod_{\rho} B_{\rho}$

•
$$|\psi\rangle = B_{p'}|\psi\rangle$$

• $\overline{Z}_1|\psi\rangle = \overline{Z}_1 B_{p'}|\psi\rangle$
• $\overline{Z}_1 \equiv \overline{Z}_1 B_{p'}$
 $\equiv \overline{Z}_1 B_{p'} B_{p''}$
 $\equiv \overline{Z}_1 \prod_{\rho} B_{\rho}$

•
$$|\psi\rangle = B_{p'}|\psi\rangle$$

• $\overline{Z}_1|\psi\rangle = \overline{Z}_1B_{p'}|\psi\rangle$
• $\overline{Z}_1 \equiv \overline{Z}_1B_{p'}$
 $\equiv \overline{Z}_1B_{p'}B_{p''}$
 $\equiv \overline{Z}_1\prod_p B_p$

• One degree of freedom associated to each non-trivial cycle.

- Operator in same homological class act identically on ground space.
- We encode the quantum information is those degrees of freedom:
 - The information can only be modified by topologically non-trivial operators.
 - Robust when $(\ell \to \infty)$... ?

- One degree of freedom associated to each non-trivial cycle.
- Operator in same homological class act identically on ground space.
- We encode the quantum information is those degrees of freedom:
 - The information can only be modified by topologically non-trivial operators.
 - Robust when $(\ell \to \infty)$... ?

- One degree of freedom associated to each non-trivial cycle.
- Operator in same homological class act identically on ground space.
- We encode the quantum information is those degrees of freedom:
 - The information can only be modified by topologically non-trivial operators.
 Bobust when (ℓ → ∞) 2

- One degree of freedom associated to each non-trivial cycle.
- Operator in same homological class act identically on ground space.
- We encode the quantum information is those degrees of freedom:
 - The information can only be modified by topologically non-trivial operators.
 - Robust when $(\ell \to \infty)$... ?

- One degree of freedom associated to each non-trivial cycle.
- Operator in same homological class act identically on ground space.
- We encode the quantum information is those degrees of freedom:
 - The information can only be modified by topologically non-trivial operators.
 - Robust when $(\ell \to \infty)$... ?

- One degree of freedom associated to each non-trivial cycle.
- Operator in same homological class act identically on ground space.
- We encode the quantum information is those degrees of freedom:
 - The information can only be modified by topologically non-trivial operators.
 - Robust when $(\ell \to \infty)$... ?

- Consider error $E = \sigma_x^i$.
- σⁱ_x anti-commutes with adjacent plaquettes.
- $\sigma_x^i |\psi\rangle$ is a -1 eigenstate of B_p and $B_{p'}$
- Since $H = -(\sum_{s} A_{s} + \sum_{p} B_{p}), \sigma_{x}^{i}$ costs 2 energy units.
- This error has created a pair of magnetic particles.

- Consider error $E = \sigma_x^i$.
- σⁱ_x anti-commutes with adjacent plaquettes.
- $\sigma_x^i |\psi\rangle$ is a -1 eigenstate of B_p and $B_{p'}$
- Since $H = -(\sum_{s} A_{s} + \sum_{p} B_{p}), \sigma_{x}^{i}$ costs 2 energy units.
- This error has created a pair of magnetic particles.

- Consider error $E = \sigma_x^i$.
- σⁱ_x anti-commutes with adjacent plaquettes.
- $\sigma_{\rm X}^i |\psi
 angle$ is a -1 eigenstate of ${\cal B}_{
 m P}$ and ${\cal B}_{
 m P'}$
- Since $H = -(\sum_{s} A_{s} + \sum_{p} B_{p}), \sigma_{x}^{i}$ costs 2 energy units.
- This error has created a pair of magnetic particles.

		1			

- Consider error $E = \sigma_x^i$.
- σⁱ_x anti-commutes with adjacent plaquettes.
- $\sigma_{\rm X}^i |\psi
 angle$ is a -1 eigenstate of ${\cal B}_{
 m p}$ and ${\cal B}_{
 m p'}$
- Since $H = -(\sum_{s} A_{s} + \sum_{p} B_{p})$, σ_{x}^{i} costs 2 energy units.
- This error has created a pair of magnetic particles.

- Consider error $E = \sigma_x^i$.
- σⁱ_x anti-commutes with adjacent plaquettes.
- $\sigma_{\rm X}^i |\psi
 angle$ is a -1 eigenstate of ${\cal B}_{
 m p}$ and ${\cal B}_{
 m p'}$
- Since $H = -(\sum_{s} A_{s} + \sum_{p} B_{p})$, σ_{x}^{i} costs 2 energy units.
- This error has created a pair of magnetic particles.

New error occurs on neighboring qubit:

- Restores the sign of the middle plaquette
- Flips the sign of the right plaquette

		10			

- New error occurs on neighboring qubit:
 - Restores the sign of the middle plaquette
 - Flips the sign of the right plaquette

- New error occurs on neighboring qubit:
 - Restores the sign of the middle plaquette
 - Flips the sign of the right plaquette

- New error occurs on neighboring qubit:
 - Restores the sign of the middle plaquette
 - Flips the sign of the right plaquette

<u> </u>						
		10	0			
		1	<u>ی د</u>	01		
		10	<u>ی</u> و	3 1		
		0	× (30		

Error chains

- Error chains are attached to particles, each with given energy.
- Particles can move around at no energy cost.
- Error chains can be stretched freely.

Error chains

- Error chains are attached to particles, each with given energy.
- Particles can move around at no energy cost.
- Error chains can be stretched freely.

Error chains

- Error chains are attached to particles, each with given energy.
- Particles can move around at no energy cost.
- Error chains can be stretched freely.

Particle annihilation

- An error can annihilate two particles
- The particle's worldline is left behind after fusion.
- Particle fusion can leave behind a worldline corresponding to a logical operation

Memory corruption

Particle annihilation

- An error can annihilate two particles
- The particle's worldline is left behind after fusion.
- Particle fusion can leave behind a worldline corresponding to a logical operation

Memory corruption

Particle annihilation

- An error can annihilate two particles
- The particle's worldline is left behind after fusion.
- Particle fusion can leave behind a worldline corresponding to a logical operation

Memory corruption

Particle annihilation

- An error can annihilate two particles
- The particle's worldline is left behind after fusion.
- Particle fusion can leave behind a worldline corresponding to a logical operation

Memory corruption

Electrical particles

- The same story holds for σ_z errors
- These will create electrical particles located at the lattice's vertices (plaquette of dual lattice).

Outline

Kitaev's code

2 Decoding problem

3 2D Commuting Projector Codes

4 Thermal instability

Open Questions

• An error produces defects (error syndrome)

15 % Noise rate

- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

Threshold

• Threshold noise rate \approx 8.2%.

Known self-correcting systems

- 2D toric code has point-like electric and magnetic excitations, ends of error strings.
- 3D toric code has point-like electric excitations and string-like magnetic excitations, boundaries of error membranes.
 - Z type errors are confined due to string tension.
- 4D toric code has sting-like electric and magnetic excitations, boundaries of error membranes.
 - Z and X type errors are confined due to string tension.

Known self-correcting systems

- 2D toric code has point-like electric and magnetic excitations, ends of error strings.
- 3D toric code has point-like electric excitations and string-like magnetic excitations, boundaries of error membranes.
 - Z type errors are confined due to string tension.
- 4D toric code has sting-like electric and magnetic excitations, boundaries of error membranes.
 - Z and X type errors are confined due to string tension.

Known self-correcting systems

- 2D toric code has point-like electric and magnetic excitations, ends of error strings.
- 3D toric code has point-like electric excitations and string-like magnetic excitations, boundaries of error membranes.
 - Z type errors are confined due to string tension.
- 4D toric code has sting-like electric and magnetic excitations, boundaries of error membranes.
 - Z and X type errors are confined due to string tension.

Known self-correcting systems

- 2D toric code has point-like electric and magnetic excitations, ends of error strings.
- 3D toric code has point-like electric excitations and string-like magnetic excitations, boundaries of error membranes.
 - Z type errors are confined due to string tension.
- 4D toric code has sting-like electric and magnetic excitations, boundaries of error membranes.

• *Z* and *X* type errors are confined due to string tension.

Known self-correcting systems

- 2D toric code has point-like electric and magnetic excitations, ends of error strings.
- 3D toric code has point-like electric excitations and string-like magnetic excitations, boundaries of error membranes.
 - Z type errors are confined due to string tension.
- 4D toric code has sting-like electric and magnetic excitations, boundaries of error membranes.
 - Z and X type errors are confined due to string tension.

Known self-correcting systems

- 2D toric code has point-like electric and magnetic excitations, ends of error strings.
- 3D toric code has point-like electric excitations and string-like magnetic excitations, boundaries of error membranes.
 - Z type errors are confined due to string tension.
- 4D toric code has sting-like electric and magnetic excitations, boundaries of error membranes.
 - Z and X type errors are confined due to string tension.

Known self-correcting systems

- 2D toric code has point-like electric and magnetic excitations, ends of error strings.
- 3D toric code has point-like electric excitations and string-like magnetic excitations, boundaries of error membranes.
 - Z type errors are confined due to string tension.
- 4D toric code has sting-like electric and magnetic excitations, boundaries of error membranes.
 - Z and X type errors are confined due to string tension.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

• Add an attractive potential between topological excitations.

- Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?

• etc.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

- Add an attractive potential between topological excitations.
 - Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?

• etc.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

- Add an attractive potential between topological excitations.
 - Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?

• etc.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

- Add an attractive potential between topological excitations.
 - Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?

• etc.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

- Add an attractive potential between topological excitations.
 - Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?

• etc.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

- Add an attractive potential between topological excitations.
 - Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?
- etc.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

- Add an attractive potential between topological excitations.
 - Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?
- etc.

Confinement in lower dimensions?

Main idea

Find a local hamiltonian with topological order but with confined excitations.

- Add an attractive potential between topological excitations.
 - Can be realized by coupling to bosonic field (phonons).
- Exists a finite temperature confined phase?
- Destroys topological order?
- Can be realized with two-body local interactions?
- etc.

Outline

- Kitaev's code
- 2 Decoding problem
- 3 2D Commuting Projector Codes
 - 4 Thermal instability
- Open Questions

Λ is a 2D lattice.

- Each vertex occupied by *d*-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- Λ is a 2D lattice.
- Each vertex occupied by *d*-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- Λ is a 2D lattice.
- Each vertex occupied by *d*-level quantum particle.

• Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

- $P_X = 0$ if radius $(X) \ge w$.
- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.

• Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

- $P_X = 0$ if radius $(X) \ge w$.
- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.

• Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

- $P_X = 0$ if radius $(X) \ge w$.
- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of *H*
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

•
$$P_X = 0$$
 if radius $(X) \ge w$.

- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).

• Code
$$C = \{\psi : P_X | \psi \rangle = | \psi \rangle \}$$

= ground space of H

- = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).
- Code $C = \{\psi : P_X | \psi \rangle = |\psi \rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with

•
$$P_X = 0$$
 if radius $(X) \ge w$.

- $[P_X, P_Y] = 0.$
- *P_X* are projectors (optional).

• Code
$$C = \{\psi : P_X | \psi \rangle = | \psi \rangle \}$$

= ground space of H

- = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.
Definitions

- A is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius $(X) \ge w$.
 - $[P_X, P_Y] = 0.$
 - *P_X* are projectors (optional).

• Code
$$C = \{\psi : P_X | \psi \rangle = | \psi \rangle \}$$

- = ground space of H
- = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - A is a regular square lattice.
 - Each P_X acts on 2 × 2 cell.

2D Commuting Projector Codes Well known examples

Kitaev's toric code

- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

2D Commuting Projector Codes Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

2D Commuting Projector Codes

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark

Subsystem codes do not belong to this family.

David Poulin (Sherbrooke)

Standard definitions

Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\operatorname{Tr}_{M}\rho) = \rho$ for all code states ρ . M correctable \Leftrightarrow No order parameter on $M \Leftrightarrow \Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator *L* such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Standard definitions

Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\operatorname{Tr}_{M}\rho) = \rho$ for all code states ρ . M correctable \Leftrightarrow No order parameter on $M \Leftrightarrow \Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance *d* is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Standard definitions

Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\operatorname{Tr}_{M}\rho) = \rho$ for all code states ρ . M correctable \Leftrightarrow No order parameter on $M \Leftrightarrow \Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance *d* is the size of the smallest non-correctable region.

Logical operator

Operator *L* such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Outline

- Kitaev's code
- 2 Decoding problem
- 3 2D Commuting Projector Codes
- 4 Thermal instability

Open Questions

Statement of the lemma

Holographic disentangling lemma (Bravyi, DP, Terhal)

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$U_{\partial M}|\psi
angle = |\phi_M
angle \otimes |\psi'_{\overline{M}}
angle$$

for some *fixed* state $|\phi_M\rangle$ on *M*.

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

• There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

 $|U_{\partial M}|\psi
angle = |\phi_M
angle \otimes |\psi_{\overline{M}}
angle$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

• There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

 $|U_{\partial M}|\psi
angle = |\phi_M
angle \otimes |\psi_{\overline{M}}
angle$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

• There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$ $U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_{\overline{M}}\rangle$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

• There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$ $U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_{\overline{M}}\rangle$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

• There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle\in\mathcal{C}$

$$J_{\partial M} |\psi
angle = |\phi_M
angle \otimes |\psi'_{\overline{M}}
angle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

• There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle\in\mathcal{C}$

$$J_{\partial M} |\psi
angle = |\phi_M
angle \otimes |\psi'_{\overline{M}}
angle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

- Let *M* be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

• There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle\in\mathcal{C}$

$$J_{\partial M} |\psi
angle = |\phi_M
angle \otimes |\psi'_{\overline{M}}
angle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$. • $|\psi\rangle, |\psi'\rangle \in C$.

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle.$ • $|\psi\rangle, |\psi'\rangle \in C.$

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

•
$$|\psi\rangle \neq |\psi'\rangle$$
.
• $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

•
$$|\psi\rangle \neq |\psi'\rangle$$
.
• $|\psi\rangle, |\psi'\rangle \in C$.

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

•
$$|\psi\rangle \neq |\psi'\rangle$$
.
• $|\psi\rangle, |\psi'\rangle \in C$.

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

•
$$|\psi\rangle \neq |\psi'\rangle$$
.
• $|\psi\rangle, |\psi'\rangle \in C$.

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

•
$$|\psi\rangle \neq |\psi'\rangle$$
.
• $|\psi\rangle, |\psi'\rangle \in C$.

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

 Local commuting projector codes have string-like logical operators.

- If this logical operator is a sequence of local unitary operators, system is thermally unstable.
 - We can sequentially apply the transformation to create, move, and fuse a point-like excitation.
- What happens in more general cases?

Main result (Landon-Cardinal & DP)

- Local commuting projector codes have string-like logical operators.
- If this logical operator is a sequence of local unitary operators, system is thermally unstable.
 - We can sequentially apply the transformation to create, move, and fuse a point-like excitation.
- What happens in more general cases?

Main result (Landon-Cardinal & DP)

- Local commuting projector codes have string-like logical operators.
- If this logical operator is a sequence of local unitary operators, system is thermally unstable.
 - We can sequentially apply the transformation to create, move, and fuse a point-like excitation.
- What happens in more general cases?

Main result (Landon-Cardinal & DP)

- Local commuting projector codes have string-like logical operators.
- If this logical operator is a sequence of local unitary operators, system is thermally unstable.
 - We can sequentially apply the transformation to create, move, and fuse a point-like excitation.
- What happens in more general cases?

Main result (Landon-Cardinal & DP)

- Local commuting projector codes have string-like logical operators.
- If this logical operator is a sequence of local unitary operators, system is thermally unstable.
 - We can sequentially apply the transformation to create, move, and fuse a point-like excitation.
- What happens in more general cases?

Main result (Landon-Cardinal & DP)

Noise model

Only a constant amount of energy at any given time

- No need to backtrack.
- Number of steps \propto lattice linear size.

If successful, final state is corrupted. (not trivial)

David Poulin (Sherbrooke)

Noise model

Apply random unitary on sites 1 & 2.

Measure P₁₂

If P₁₂ = 0 go to 1.

Apply random unitary on site 3.

Measure P_{23}

If P₂₃ = 0 go to 3.

Only a constant amount of energy at any given time.

- No need to backtrack.
- Number of steps \propto lattice linear size.

If successful, final state is corrupted. (not trivia

Noise model

Apply random unitary on sites 1 & 2.

• If $P_{12} = 0$ go to

Apply random unitary on site 3.

• If P₂₃ = 0 go to 3.

Only a constant amount of energy at any given time.

- No need to backtrack.
- Number of steps \propto lattice linear size.

If successful, final state is corrupted. (not trivia
Noise model

Apply random unitary on sites 1 & 2.

Inteasure r_{12}

Apply random unitary on site 3.

• If $P_{23} = 0$ go to 3.

Only a constant amount of energy at any given time.

- No need to backtrack.

If successful, final state is corrupted. (not trivia

Noise model

Apply random unitary on sites 1 & 2.
Measure P₁₂

• If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}

If P₂₃ = 0 go to 3.

Only a constant amount of energy at any given time.

- No need to backtrack.

If successful, final state is corrupted. (not trivia

Noise model

Apply random unitary on sites 1 & 2.
Measure P₁₂

• If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}

If P₂₃ = 0 go to 3.

Only a constant amount of energy at any given time.

- No need to backtrack.
- Number of steps \propto lattice linear size.

If successful, final state is corrupted. (not trivia

Noise model

- Apply random unitary on sites 1 & 2.
- Measure P₁₂
 - If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

vieasure r₂₃

If P₂₃ = 0 go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivi

Noise model

- Apply random unitary on sites 1 & 2.
- Measure P₁₂
 - If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

 $P_{23} = 0.00 \text{ tr}$

- If P₂₃ = 0 go to 3.
- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivi

Noise model

- Apply random unitary on sites 1 & 2.
- Measure P₁₂
 - If $P_{12} = 0$ go to 1.
- Apply random unitary on site 3.
- Measure P₂₃
 - If $P_{23} = 0$ go to 3.
 - Only a constant amount of energy at any given time.
 - No need to backtrack.
 - Number of steps \propto lattice linear size.

It successful, final state is corrupted. (not triv

Noise model

- Apply random unitary on sites 1 & 2.
- Measure P₁₂
 - If $P_{12} = 0$ go to 1.
- Apply random unitary on site 3.
- Measure P₂₃
 - If $P_{23} = 0$ go to 3.
 - Only a constant amount of energy at any given time.
 - No need to backtrack.

It successful, final state is corrupted. (not triv

Noise model

- Apply random unitary on sites 1 & 2.
- Measure P₁₂
 - If $P_{12} = 0$ go to 1.
- Apply random unitary on site 3.
- Measure P₂₃
 - If P₂₃ = 0 go to 3.
 - Only a constant amount of energy at any given time.
 - No need to backtrack.
 - Number of steps \propto lattice linear size.
 - If successful, final state is corrupted. (not trivial)

David Poulin (Sherbrooke)

Noise model

- Apply random unitary on sites 1 & 2.
- 2 Measure P₁₂
 - If $P_{12} = 0$ go to 1.
- Apply random unitary on site 3.
- Measure P₂₃
 - If P₂₃ = 0 go to 3.
 - Only a constant amount of energy at any given time.
 - No need to backtrack.
 - Number of steps \propto lattice linear size.
 - If successful, final state is corrupted. (not trivial)

David Poulin (Sherbrooke)

Noise model

- Apply random unitary on sites 1 & 2.
- 2 Measure P₁₂
 - If $P_{12} = 0$ go to 1.
- Apply random unitary on site 3.
- Measure P₂₃
 - If P₂₃ = 0 go to 3.
 - Only a constant amount of energy at any given time.
 - No need to backtrack.
 - Number of steps \propto lattice linear size.
 - If successful, final state is corrupted. (not trivial)

David Poulin (Sherbrooke)

Noise model

- Apply random unitary on sites 1 & 2.
- 2 Measure P₁₂
 - If $P_{12} = 0$ go to 1.
- Apply random unitary on site 3.
- Measure P₂₃
 - If P₂₃ = 0 go to 3.
 - Only a constant amount of energy at any given time.
 - No need to backtrack.
 - Number of steps \propto lattice linear size.
 - If successful, final state is corrupted. (not trivial)

David Poulin (Sherbrooke)

Outline

- Kitaev's code
- 2 Decoding problem
- 3 2D Commuting Projector Codes
- 4 Thermal instability

5 Open Questions

- Stable spectrum \Rightarrow topological order
- Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics
 - Decoding problem ⇔ Renormalization group methods
 - Fault-tolerant threshold ⇔ ordered-disordered transition

 - Holographic disentangling lemma ⇔ Area law

- Stable spectrum \Rightarrow topological order
- Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics
 - Decoding problem ⇔ Renormalization group methods
 - Fault-tolerant threshold ⇔ ordered-disordered transition

 - Holographic disentangling lemma ⇔ Area law

- Stable spectrum \Rightarrow topological order
- Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics
 - Decoding problem ⇔ Renormalization group methods
 - Fault-tolerant threshold ⇔ ordered-disordered transition

 - Holographic disentangling lemma ⇔ Area law

- Stable spectrum \Rightarrow topological order
- Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics
 - Decoding problem ⇔ Renormalization group methods
 - Fault-tolerant threshold ⇔ ordered-disordered transition

 - Holographic disentangling lemma ⇔ Area law

- Self-correcting quantum memory
 - Stable spectrum \Rightarrow topological order
 - Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics

 - Fault-tolerant threshold ⇔ ordered-disordered transition
 - Error correction ⇔ Topological order (no local order parameter)
 - Holographic disentangling lemma ⇔ Area law

- Self-correcting quantum memory
 - Stable spectrum \Rightarrow topological order
 - Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics

 - Fault-tolerant threshold ⇔ ordered-disordered transition
 - Error correction ⇔ Topological order (no local order parameter)
 - Holographic disentangling lemma ⇔ Area law

- Self-correcting quantum memory
 - Stable spectrum \Rightarrow topological order
 - Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics

 - Fault-tolerant threshold \Leftrightarrow ordered-disordered transition
 - Error correction ⇔ Topological order (no local order parameter)
 - Holographic disentangling lemma ⇔ Area law

- Self-correcting quantum memory
 - Stable spectrum \Rightarrow topological order
 - Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics

 - Fault-tolerant threshold \Leftrightarrow ordered-disordered transition
 - Error correction ⇔ Topological order (no local order parameter)
 - Holographic disentangling lemma ⇔ Area law

- Self-correcting quantum memory
 - Stable spectrum \Rightarrow topological order
 - Finite temperature phase \Rightarrow energy barrier
- Conflict in two spacial dimensions.
- Many connections between coding theory and many-body physics

 - Fault-tolerant threshold \Leftrightarrow ordered-disordered transition
 - Error correction ⇔ Topological order (no local order parameter)
 - Holographic disentangling lemma \Leftrightarrow Area law