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Matrix Product States

We represent the wavefunction as a Matrix Product State

|Ψ〉 = Tr
∑

s1,s2,...

As1 As2 As3 As4 · · · |s1〉|s2〉|s3〉|s4〉 · · ·
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Λ is the wavefunction in the Schmidt basis

|Ψ〉 =

D∑
i=1

Λii|i〉L|i〉R

This Ansatz restricts the entanglement of the wavefunction S ∼ log D.
But this is OK for groundstates in 1D!
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Time evolution

Real time evolution of a quantum state

|ψ(t)〉 = exp[iHt]|ψ(0)〉

Problem: exp[iHt] is a complicated object! Need an approximation scheme

exp[iHt] = (exp[iH∆t])N

and expand exp[iH∆t] for small ∆t.

Two common approaches
Krylov Subspace - Polynomial approximation

exp[iH∆t] ' a0 + a1H + a2H2 + . . .+ akHk

and use MPS arithmetic to construct H|ψ〉,H2|ψ〉, . . .Hk|ψ〉.
Lie-Trotter-Suzuki decomposition

exp[iH∆t] ' exp[iHodd] exp[iHeven]
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Time Evolving Block Decimation (or T-DMRG)

Each term in exp[iHodd/even] is a 2-body unitary gate

=H
even

H =
odd

Putting all this together, we have
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Infinite TEBD (iTEBD, Vidal, 2004)

This algorithm also works if we have an infinite system with translational
invariance

AA

A B BAA B
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Correlation functions

The form of correlation functions are determined by the eigenvalues of the
transfer operator

All eigenvalues magnitude ≤ 1
One eigenvalue equal to 1,
corresponding to the identity
operator
Eigenvalues may be complex only
if parity symmetry is broken

Expansion in terms of eigenspectrum λi:

〈O(x)O(y)〉 =
∑

i

ai λ
|y−x|
i
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Hubbard model transfer matrix spectrum
Half-filling, U/t=4
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CFT Parameters

For a critical mode, the correlation length increases with number of states m
as a power law,

ξ ∼ mκ

[T. Nishino, K. Okunishi, M. Kikuchi, Phys. Lett. A 213, 69 (1996)
M. Andersson, M. Boman, S. Östlund, Phys. Rev. B 59, 10493 (1999)
L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, J. I. Latorre, Phys. Rev. B 78, 024410 (2008)]

This exponent is a function only of the central charge,

κ =
6√

12c + c

[Pollmann et al, PRL 2009]

Even better, we can directly calculate the scaling dimension

a = (1− λ)∆

(And CFT operator product expansion?...)
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Heisenberg model fit for the scaling dimension
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Infinite boundary conditions
H.N. Phien, G. Vidal, IPM, Phys. Rev. B 86, 245107 (2012), Phys. Rev. B 88, 035103 (2013)
(see also Zauner et al 1207.0862, Milsted et al 1207.0691)

Local perturbation to a translationally invariant state

Window (N sites)Left Right

Map infinite system onto a finite MPS, with an effective boundary
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Key point: Even if the perturbation is correlated at long range, only the
tensors at the perturbation are modified
Decompose the Hamiltonian

H = HL + HLW + HW + HWR + HR

We can calculate HL and HR by summing the infinite series of terms from
the left and right (see arXiv:0804.2509 and arXiv:1008.4667)
Away from the perturbation the wavefunction is approximately an
eigenstate, so

exp itHL ∼ I

and we don’t leave the Hilbert space of the semi-infinite strip
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Spin-1 Heisenberg chain, S+ initial perturbation

60 80 100 120 140

window size = 60

Infinite boundaries
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Resize the window

We can do better - why keep the size of the window fixed?
Window expansion - incorporate sites from the translationally-invariant section
into the window

Criteria for expanding: is the wavefront near the boundary?
(Calculate from the fidelity of the wavefunction at the boundary)
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Window contraction

Window contraction - incorporate tensors from the window into the boundary
Contract the MPS and Hamiltonian MPO

=WWWW

WWWW =
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Follow the wavefront
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Locality of time evolution

Although the time evolution operator is complicated, evolution itself is
purely local

Lieb-Robinson bound: the ‘quantum speed limit’ on the rate that
information can flow

Existing algorithms don’t really capture this

Light cone in Lie-Trotter-Suzuki expands way too fast

What about longer range interactions?
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Stop decomposing H into 2-body gates!

Partition a quantum system (anything, doesn’t have to be MPS):

The surface states form an almost-complete Hilbert space for some depth (at
least a few lattice sites)

Basic idea: Decompose the time-evolution operator into terms that are
local to a block

HsH
L

Sweep

Accumulate HL ← HL + Hs

Hs = components of H acting on site s (and to the left)
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HL and Hs act on the left-half of the system, D× D matrices
Decompose the evolution operator into a product of terms:

exp[−it(HL + Hs)] = exp[−itHL] exp[−itH′s]

What is H′s?

itH′s = itHs+t2[HL,Hs]+
t3

6
[2HL+Hs, [HL,Hs]]+i

t4

24
[HL+Hs, [HL, [HL,Hs]]]+. . .

H′s is more complicated, but acts on a finite range (if H is finite range),
and decays rapidly
Easy to calculate - similar complexity to one iteration of DMRG.
High order algorithm with one pass through the system (compare 4th
order Lie-Trotter-Suzuki)
Can do long(er) range interactions - as long as they decay sufficiently
quickly
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Conclusions

MPS in the infinite size limit has many advantages

Infinite Boundary Conditions - solve a finite section of a lattice embedded
in an infinite system

Expanding window - ‘light cone‘ evolution

Moving window - follow the wavefront

Decompositions of the time evolution operator are efficient if they are
block local
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