Random quantum magnets in $d \ge 2$ dimensions: Critical behavior and entanglement entropy

Ferenc Iglói (Budapest)

in collaboration with

István Kovács

Phys. Rev. B83, 174207 (2011) J. Phys.: Condens. Matter 23, 404204 (2011) EPL 97, 67009 (2012) Phys. Rev. B 87, 024204 (2013)

Statistical Physics of Quantum Matter: Taipei, July 28-31, 2013

Introduction

- Quantum phase transitions
 - takes place at T = 0
 - due to quantum flactuation
 - by varying a quantum control parameter
- Examples
 - rare-earth magnetic insulators
 - heavy-fermion compounds
 - high-temperature superconductors
 - two-dimensional electron gases
 - quantum magnets: LiHoF₄
- Disorder often play an important role
 - Anderson localization
 - many-body localization

- quantum spin glasses: $LiHo_xY_{1-x}F_4$
- Paradigmatic model: random transverse Ising model (RTIM)
 - in 1d exact results, also through strong disorder RG method
 - * infinite disorder scaling at the critical point
 - * dynamical (Griffiths-McCoy) singularities outside the critical point
 - in 2d numerical implementation of the SDRG method
 - * infinite disorder scaling
 - but contradictionary results through the quantum cavity approach

Aim of the present talk

- Improve the numerical algorithm of the SDRG method
- Study the critical behavior of the RTIM for d > 2
- Study Erdős-Rényi random graphs ($d \rightarrow \infty$)
- Study the boundary critical behavior at surfaces, corners, edges
- Study the entanglement entropy and its singularity at the critical point

Random transverse Ising model

$$= -\sum_{\langle i,j \rangle} J_{ij} \sigma_i^z \sigma_j^z - \sum_i h_i \sigma_i^x$$
• box-h disorder

• J_{ij} couplings

.

.

- independent random numbers from the distribution p(J)
- $q(h) = \frac{1}{h_b} \Theta(h) \Theta(h_b h)$

•

- h_i transverse fields
- independent random numbers from the distribution q(h)

fix-h disorder
-
$$p(J) = \Theta(J)\Theta(1-J)$$

- $q(h) = \delta(h-h_f)$

step-function)

- $p(J) = \Theta(J)\Theta(1-J)$ ($\Theta(x)$: Heaviside

Quantum control parameter: $\theta = \log(h_b)$ or $\theta = \log(h_f)$.

 \mathscr{H}

Strong disorder RG approach

(Ma, Dasgupta, Hu 1979, D.S. Fisher 1992, F.I. & Monthus 2005)

- sort the couplings and transverse fields, $\Omega = \max(J_i, h_i)$
- eliminate the largest parameter reduce the number of spins by one
- generate new effective parameters between the remaining spins
 - $\left[\begin{array}{c} \Omega = J_{ij} \\ i \text{ and } j \text{ form a ferromagnetic cluster aggregation} \\ \text{in an effective field: } \widetilde{h}_{ij} = \frac{h_i h_j}{J_{ij}} \\ \text{having a moment: } \widetilde{\mu}_{ij} = \mu_i + \mu_j \end{array}$
 - $\Omega = h_i$ site *i* is decimated out annihilation new effective couplings between sites *j* and *k*: $\widetilde{J}_{jk} = \frac{J_{ij}J_{ik}}{h_i}$
- repeate the transformation
- at the fixed point Ω is reduced to $\Omega^* = 0$.
- final result: set of connected clusters with different masses, μ , decimated at different energies, Ω .

Exact results in 1D Infinite disorder fixed point (IDFP)

- Critical point: $\overline{\log(J)} = \overline{\log(h)}$
 - distribution of the effective parameters is logarithmically broad
 - asymptotically exact decimation steps
 - strongly anisotropic scaling $\ln \Omega_L \sim L^{\psi}$, $\psi = 1/2$
 - large effective spin clusters size: $\xi \sim |\theta \theta_c|^{-\nu}$ v = 2

moment: $\mu \sim [\ln(\Omega_0/\Omega)]^{\phi} \sim L^{d_f}$ $d_f = \phi \psi = d - x, \quad \phi = \frac{\sqrt{5}+1}{2}, \quad x = \frac{3-\sqrt{5}}{4}$

- In the Griffiths phase: $\theta \theta_c > 0$
 - non-singular static behaviour: $\xi<\infty$
 - singular dynamical behaviour: $\Omega \sim L^{-z}$ dynamical exponent: $z = z(\theta)$ $\chi(T) \sim T^{-1+d/z}$, $C_v(T) \sim T^{d/z}$

Numerical implementation of the RG procedure for D > 1

- differences with the 1D procedure
 - change in the topology
 - application of the maximum rule (valid at IDFP)

- problems with the naïve implementation
 - *h*-decimations induce several new bonds
 - the lattice transforms to a fully connected cluster
 - slow algorithm: for N sites works in $\mathscr{O}(N^3)$ time
- improved algorithm
 - concept of local maxima which can be decimated independently
 - concept of optimal RG trajectory along which the time is minimal
 - filtering out irrelevant bonds getting rid of latent couplings
 - improved algorithm works in $\mathcal{O}(N \log N)$ time

Bulk critical behavior

- Finite-size critical points $\theta_c(S,L)$
 - two-copies of the same sample (S and S') are coupled together

- continuously increase θ and monitor the clusters, which are built of identical sites in the copies
- at $\theta_c(S,L)$ the last correlated cluster disappears, thus for $\theta > \theta_c(S,L)$ we are in the paramagnetic phase

• Distribution of pseudocritical points

- Finite-size scaling
 - shift of the mean:

$$\left| \theta_c - \overline{\theta_c}(L) \right| \sim L^{-1/\nu_s}$$

- width of the distribution:

 $\Delta \theta_c(L) \sim L^{-1/v_w}$

- numerical estimates:

$$v_s = v_w$$

like in a conventional random fixed point

Scaling at the critical point

• Cluster structure

- Correlation clusters \rightarrow magnetization
 - mass: $\mu = N^{\#}$ of connected sites
 - typical mass: $\mu \sim L^{d_f}$

- distribution function:

$$P_L(\boldsymbol{\mu}) = L^{d_f} \tilde{P}(\boldsymbol{\mu} L^{-d_f})$$

- power-law tail for large
$$\mu L^{-d_f} = u$$

 $ilde{P}(u) \sim u^{- au}$, with $au = 1 + rac{d}{d_f}$

Energy clusters \rightarrow dynamical scaling

- energy scale: ε_L smallest gap associated with the energy cluster
- Critical point
 - typical value: $\gamma_L \sim L^{\psi}$
 - scaling combination $\tilde{\pmb{\gamma}}=(\pmb{\gamma}_L-\pmb{\gamma}_0)L^{-\psi}$
 - Infinite disorder scaling

- We use: $\gamma_L = \log \varepsilon_L$
- (disordered) Griffiths phase
 - typical value: $\gamma_L \sim z \log(L) [\varepsilon_L \sim L^{-z}]$
 - distr.: $\log p(\gamma) \approx -(d/z)\gamma$, $(\gamma \gg 1)$
 - scaling comb.: $\tilde{\gamma} = (\gamma_L z \ln(L) \gamma_0)$

Erdős-Rényi (ER) random graphs $D \rightarrow \infty$

- Construction
 - N sites
 - kN/2 edges in random positions
 - k > 1 random graph is percolating
- Distribution of the pseudocritical points

• log-energy scaling

- logarithmically infinite disorder scaling
- width of the distribution: $W \approx W_0 + W_1 \log^{\varepsilon} N$ $\varepsilon = 1.3(2)$

Bulk o	critical	parameters
--------	----------	------------

	1D	2D	3D	4D	ER	
L_{max}		2048	128	48		
N _{max}		4.2×10^{6}	$2.1 imes 10^6$	$5.3 imes 10^{6}$	4.2×10^{6}	
$\theta_{c}^{(b)}$	0	1.6784(1)	2.5305(10)	3.110(5)	2.775(2)	
$\theta_c^{(f)}$	-1.	-0.17034(2)	-0.07627(2)	-0.04698(10)	-0.093(1)	
dv_w	2.	2.48(6)	2.90(15)	3.3(1)	7.(2)	
dv_s		2.50(6)	2.96(5)	2.96(10)	5.(1)	
x/d	$\frac{3-\sqrt{5}}{4}$	0.491(8)	0.613(3)	0.68(3)	0.81(2)	
ψ/d	1/2	0.24(1)	0.15(2)	0.11(2)	$0. \ (log)$	

Conclusions at this point

- Infinite disorder fixed point at any dimensions
- Strong disorder RG approach is asymptotically exact
- Spin glass and random ferromagnet are in the same universality class

Boundary critical behavior

pyramid geometry, inset: corner exp.

• results in 4D

slab geometry, inset:surface exp.

Boundary critical exponents - summary

	bulk		surface		corner		edge	
	<i>x</i>	x _b	X_{s}	x_{sb}	x_c	<i>x_{cb}</i>	x_e	x _{eb}
1D	$(3-\sqrt{5})/4$		0.5					
2D	0.982(15)	0.98(1)	1.60(2)	0.65(2)	2.3(1)	1.35(10)		
3D	1.840(15)	1.855(20)	2.65(15)	0.84(7)	4.2(2)	2.65(25)	3.50(15)	1.75(15)
4D	2.72(12)	2.72(10)	3.7(1)	0.85(15)				

Entanglement entropy

• entanglement entropy between a subsystem: *A* and the environment: *B*:

 $\mathscr{S}_A = -\mathrm{Tr}(\rho_A \log_2 \rho_A)$

- $\rho_A = \text{Tr}_B |0> < 0|$: reduced density matrix with |0> the ground state of the complete system: which is a set of independent clusters
- each connected cluster with *c* number of spins is in a GHZ-state:

$$\frac{1}{\sqrt{2}}(|\underbrace{\uparrow\uparrow\cdots\uparrow}_{c \text{ times}}\rangle + |\underbrace{\downarrow\downarrow\cdots\downarrow}_{c \text{ times}}\rangle)$$

• for the GHZ-state

$$- \rho_A = \left(\begin{array}{cc} 1/2 & 0\\ 0 & 1/2 \end{array}\right)$$

- $\mathscr{S}_{GHZ} = 1$

• each cluster contained both in A and B gives 1 contribution to \mathscr{S}_A

•
$$\mathscr{S}_A \sim L^{d-1}$$
: area law

- corrections at the critical point?
 - are they singular?
 - form: $\sim L^{d-1} \ln \ln L$ or $\sim L^{d-1} + b \ln L$?
 - origin: corner and/or bulk?
 - are they universal?
 - related to a diverging ξ ?

Numerical calculation by the SDRG method

Slab geometry

- the same area (term) for different ℓ : $\mathscr{S}_{\mathrm{slab}}^{(d)}(L,\ell) = a_{d-1}f_{d-1} + corr(\ell)$, $f_{d-1} = L^{d-1}$
- the finite difference is related to the correction

$$\delta \mathscr{S}_{\mathrm{slab}}^{(d)}(L,\ell) = \mathscr{S}_{\mathrm{slab}}^{(d)}(L,\ell+1) - \mathscr{S}_{\mathrm{slab}}^{(d)}(L,\ell)$$

• numerical data at the critical point:

$$\delta \mathscr{S}^{(d)}_{\mathrm{slab}}(L,\ell) \sim \ell^{-d}$$

- no singular corrections!
- phenomenological explanation
 - domains which contribute to the entropy are of size $\xi \leq \ell$
 - finite-size corrections are for $\xi\approx\ell$
 - number of these blobs are $n_{bl} \sim (L/\ell)^{d-1}$
 - each blob has the same $\mathscr{O}(1)$ correction
 - total correction: $\mathscr{S}^{(d)}_{\text{slab}}(L,\ell) - a_{d-1}f_{d-1} \sim n_{bl} \sim \ell^{d-1}$
- singular contributions are due to corners!

Cube (square) geometry in 2d

- corner correction to the area-law: $\mathscr{S}^{(2)}_{\mathrm{cube}}(\ell) = a_1 f_1 + \mathscr{S}^{(2)}_{\mathrm{cr}}(\ell)$
- calculate the difference:
 $$\begin{split} &\delta \mathscr{S}^{(2)}(\ell) \equiv \mathscr{S}^{(2)}(\ell) - 2\mathscr{S}^{(2)}(\ell/2) \\ &\approx \mathscr{S}^{(2)}_{cr}(\ell) - 2\mathscr{S}^{(2)}_{cr}(\ell/2) \end{split}$$

- universal logarithmic correction: $b^{(2)} = -0.029(1)$
- direct calculation of the corner contribution for $\ell = L/2$

. corners

no corners!

relation with the cluster geometry

Cube geometry in d > 2

 edge and corner corrections to the arealaw:

$$\mathscr{S}_{\text{cube}}^{(d)}(\ell) = a_{d-1}f_{d-1} + \sum_{E=1}^{d-2} a_E f_E + \mathscr{S}_{\text{cr}}^{(d)}(\ell)$$

- $1 \leq E < d-1$: dimension of the edge, $f_E \sim L^E$
- $a_E a_E(\ell) \sim \ell^{-E}$, as for the surface term
- direct calculation of the corner contribution for $\ell = L/2$

$$\mathscr{S}_{cr}^{(d)} = \sum_{D=0}^{d-1} \left(-\frac{1}{2}\right)^{D} \binom{d}{D} \mathscr{S}_{D}^{(d)}$$

- numerical data: $\mathscr{S}_{\mathrm{cr}}^{(d)}(\ell) \simeq -b^{(d)} \ln \ell + cst$
- universal logarithmic correction: $b^{(2)}=-0.029(1),\ b^{(3)}=0.012(2)$ and $b^{(4)}=-0.006(2)$

Phenomenological explanation

- consider 2-site clusters (at the end of the RG)
- "corner clusters" have points at hypercubes connected by the main diagonal
- relative coordinates of the 2-site clusters: $0 \le x_j \le L/2$, j = 1, 2, ..., d) (periodic b.c.)
- the corner entropy (averaging over all positions): $-2\prod_{j=1}^{d}(-x_j/L)$

 probability of a 2-site cluster of length r is:

the average pair-correlation function: $C_{av}(r) \approx n_r^2$ $n_r \sim r^{-d}$: the density of non-decimated sites

• average contribution: $\begin{aligned} \mathscr{S}_{\mathrm{cr}}^{(d)}(\ell) &\sim -\int_{1}^{\ell} \mathrm{d}x_{1} \dots \int_{1}^{\ell} \mathrm{d}x_{d} \prod_{j=1}^{d} (-x_{j}/r^{2}) \\ &\sim (-1)^{d+1} \int_{1}^{\ell} (r^{d-1}r^{d})/r^{2d} \mathrm{d}r \\ &\sim (-1)^{d+1} \ln \ell \end{aligned}$

Corner correction outside the critical point

The singularity is related to a diverging correlation length!

Conclusions

- Infinite disorder fixed point at any dimensions
- Strong disorder RG approach is asymptotically exact
- Universal (disorder independent) bulk and local exponents
- Entanglement entropy: logarithmic correction to the area law due to corners at the critical point
- Disordered model is (at least) so well understood as the pure model